Abstract

Carbon fiber–reinforced polymer (CFRP) sheets have been widely applied in civil engineering, and the bonded materials are important components in the practical strengthening process. Presently, epoxy adhesive is the most widely used cementation material, but the inorganic materials are developing rapidly. This article reviews the taxonomy and origin of cementation material used in civil engineering as structural adhesives to create the bond between CFRP and summarizes the properties of epoxy adhesive, alkali-activated cementing material, magnesium oxychloride cement, and cement-based composite material. The conclusion shows that using an inorganic adhesive as a binder can fix the temperature problems of organic materials and improve the bearing capacity of reinforced concrete structures. At present, the inorganic adhesive also has weaknesses, which indicates the future research directions.

References

1.
Hollaway
,
L. C.
, “
The Evolution of and the Way Forward for Advanced Polymer Composites in the Civil Infrastructure
,”
Constr. Build. Mater.
, Vol. 
17
, Nos. 
6–7
,
2003
, pp. 
365
378
, https://doi.org/10.1016/S0950-0618(03)00038-2
2.
Morena
,
J. J.
, “
Mold Materials
,”
Advanced Composite Mold Making
,
Van Nostrand Reinhold Co.
,
New York, NY
,
1988
, pp. 
124
125
.
3.
Schlack
,
P.
n. d. Process for the production of synthetic linear condensation polyamides. U.S. Patent 2,356,702, filed July 31, 1940, and issued August 22, 1944.
4.
Greenlee
,
S. O.
n. d. Polymeric polyhydric alcohol. U.S. Patent 2,503,726, filed May 12, 1944, and issued April 11, 1950.
5.
Miller
,
B.
and
Nanni
,
A.
, “
Bond Between CFRP Sheets and Concrete
,” presented at the
ASCE Fifth Materials Congress
, Cincinnati, OH, May 10–12,
1999
,
American Society of Civil Engineers
,
Reston, VA
, pp. 
240
247
.
6.
Jumaat
,
M. Z.
,
Rahman
,
M. M.
, and
Rahman
,
M. A.
, “
Review on Bonding Techniques of CFRP in Strengthening Concrete Structures
,”
Int. J. Phys. Sci.
, Vol. 
6
, No. 
15
,
2011
, pp. 
3567
3575
.
7.
Pham
,
H. B.
,
Al-Mahaidi
,
R.
, and
Saouma
,
V.
, “
Modeling of CFRP- Concrete Bond Using Smeared and Discrete Cracks
,”
J. Compos. Struct.
, Vol. 
75
, Nos. 
1–4
,
2006
, pp. 
145
150
, https://doi.org/10.1016/j.compstruct.2006.04.039
8.
Palomo
,
A.
,
Grutzeck
,
M. W.
, and
Blanco
,
M. T.
, “
Alkali-Activated Fly Ashes: A Cement for the Future
,”
Cem. Concr. Res.
, Vol. 
29
, No. 
8
,
1999
, pp. 
1323
1329
, https://doi.org/10.1016/S0008-8846(98)00243-9
9.
Purdon
,
A. O.
, “
The Action of Alkalis on Blast-Furnace Slag
,”
J. Soc. Chem. Ind.
, Vol. 
59
,
1940
, pp. 
191
202
, https://doi.org/10.1002/jctb.5000591202
10.
Glukhovskij
,
V. D.
,
Roksha
,
V. A.
, and
Rostovskaya
,
G. S.
, “
Concrete Containing Materials Stabilized with Slag in an Alkaline Environment for Road Construction
,”
Avtomobilnyye Dorogi
, Vol. 
11
,
1977
, pp. 
26
27
.
11.
Davidovits
,
J.
, “
Geopolymers and Geopolymeric Materials
,”
J. Therm. Anal.
, Vol. 
35
, No. 
2
,
1989
, pp. 
429
441
, https://doi.org/10.1007/BF01904446
12.
Davidovits
,
J.
, “
Geopolymer Chemistry and Sustainable Development. The Poly(sialate) Terminology: A Very Useful and Simple Model for the Promotion and Understanding of Green-Chemistry
.”
Geopolymers, Green Chemistry and Sustainable Solutions: Proceedings of the 2005 Geopolymer Conference
, Vol. 
1
,
Institut Géopolymère
,
Saint-Quentin, France
,
2005
, pp. 
9
15
.
13.
Palomo
,
A.
,
Blanco-Varela
,
M. T.
,
Granizo
,
M. L.
,
Puertas
,
F.
,
Vazquez
,
T.
, and
Grutzeck
,
M. W.
, “
Chemical Stability of Cementitious Materials Based on Metakaolin
,”
Cem. Concr. Res.
, Vol. 
29
, No. 
7
,
1999
, pp. 
997
1004
, https://doi.org/10.1016/S0008-8846(99)00074-5.
14.
Foden
,
A. J.
,
Balaguru
,
P.
, and
Lyon
,
R. E.
, “
Mechanical Properties and Fire Response of Geopolymer Structural Composites
,” presented at the
41st International SAMPE Symposium and Exhibition
, Anaheim, CA, March 25–28,
1996
,
Society for the Advancement of Material and Process Engineering
,
Diamond Bar, CA
, Vol. 
41
.
15.
Xu
,
H.
and
van Deventer
,
J. S. J.
, “
The Effect of Alkali Metals on the Formation of Geopolymeric Gels from Alkali Feldspars
,”
Colloids Surf., A
, Vol. 
216
, Nos. 
1–3
,
2003
, pp. 
27
44
, https://doi.org/10.1016/S0927-7757(02)00499-5
16.
van Jaarsveld
,
J. G. S.
,
van Deventer
,
J. S. J.
, and
Lukey
,
G. C.
, “
The Characterization of Source Materials in Fly Ash-Based Geopolymers
,”
Mater. Lett.
, Vol. 
57
, No. 
7
,
2003
, pp. 
1272
1280
, https://doi.org/10.1016/S0167-577X(02)00971-0
17.
Cheng
,
T. W.
and
Chiu
,
J. P.
, “
Fire-Resistant Geopolymer Produced by Granulated Blast Furnace Slag
,”
Miner. Eng.
, Vol. 
16
, No. 
3
,
2003
, pp. 
205
210
, https://doi.org/10.1016/S0892-6875(03)00008-6
18.
Holleman
,
A. F.
and
Wiberg
,
E.
,
Inorganic Chemistry
,
Academic Press
,
San Diego, CA
,
2001
, 1924p.
19.
Sorrell
,
C. A.
and
Armstrong
,
C. R.
, “
Reactions and Equilibria in Magnesium Oxychloride Cements
,”
J. Am. Cearm. Soc.
, Vol. 
59
, No. 
1
,
1976
, pp. 
51
54
, https://doi.org/10.1111/j.1151-2916.1976.tb09387.x
20.
Urwongse
,
L.
and
Sorrell
,
C. A.
, “
The System MgO-MgCl2-H2O at 23°C
,”
J. Am. Ceram. Soc.
, Vol. 
63
, Nos. 
9–10
,
1980
, pp. 
501
504
, https://doi.org/10.1111/j.1151-2916.1980.tb10752.x
21.
Cole
,
W. F.
and
Demediuk
,
T.
, “
X-Ray, Thermal, and Dehydration Studies on Magnesium Oxuchloride
,”
Aust. J. Chem.
, Vol. 
8
, No. 
2
,
1955
, pp. 
234
251
, https://doi.org/10.1071/CH9550234
22.
Bilinski
,
H.
,
Matković
,
B.
,
Mažuranić
,
C.
, and
Žunić
,
T. B.
, “
The Formation of Magnesium Oxychloride Phases in the Systems MgO-MgCl2 289-H2O and NaOH-MgCl2-H2O
,”
J. Am. Ceram. Soc.
, Vol. 
67
, No. 
4
,
1984
, pp. 
266
269
, https://doi.org/10.1111/j.1151-2916.1984.tb18844.x.
23.
Ved
,
E. I.
,
Zharov
,
E. F.
, and
Phong
,
H. V.
, “
Mechnaism of Magnesium Oxychloride Formation during the Hardening of Magnesium Oxychloride Cement
,”
Zh Prikl Khim
, Vol. 
49
, No. 
10
,
1976
, pp. 
2154
2158
.
24.
Li
,
V. C.
, “
On Engineered Cementitious Composites (ECC): A Review of the Material and Its Applications
,”
J. Adv. Concr. Technol.
, Vol. 
1
, No. 
3
,
2003
, pp. 
215
230
, https://doi.org/10.3151/jact.1.215.
25.
Kanda
,
T.
and
Li
,
V. C.
, “
New Micromechanics Design Theory for Pseudostrain Hardening Cementitious Composite
,”
J. Eng. Mech.
, Vol. 
125
, No. 
4
,
1999
, pp. 
373
381
, https://doi.org/10.1061/(ASCE)0733-9399(1999)125:4(373)
26.
Fischer
,
G.
and
Li
,
V. C.
, “
Influence of Matrix Ductility on the Tension-Stiffening Behavior of Steel Reinforced ECC
,”
ACI Struct. J.
, Vol. 
99
, No. 
1
,
2002
, pp. 
104
111
.
27.
Wu
,
C.
,
Micromechanical Tailoring of PVA-ECC for Structural Applications
, Ph.D. dissertation,
University of Michigan
, Ann Arbor, MI,
2001
.
28.
Kim
,
J.-K.
,
Kim
,
J.-S.
,
Ha
,
G. J.
, and
Kim
,
Y. Y.
, “
Tensile and Fiber Dispersion Performance of ECC (Engineered Cementitious Composites) Produced with Ground Granulated Blast Furnace Slag
,”
Cem. Concr. Res.
, Vol. 
37
, No. 
7
,
2007
, pp. 
1096
1105
, https://doi.org/10.1016/j.cemconres.2007.04.006.
29.
Kamal
,
A.
,
Kunieda
,
M.
,
Ueda
,
N.
, and
Nakamura
,
H.
, “
Evaluation of Crack Opening Performance of a Repair Material with Strain Hardening Behavior
,”
Cem. Concr. Compos.
, Vol. 
30
, No. 
10
,
2008
, pp. 
863
871
, https://doi.org/10.1016/j.cemconcomp.2008.08.003.
30.
Li
,
V. C.
, “
From Micromechanics to Structural Engineering: The Design of Cementitious Composites for Civil Engineering Applications
,”
Struct. Mech. Earthquake Eng.
, Vol. 
10
, No. 
2
,
1993
, pp. 
37
48
.
31.
Takashima
,
H.
,
Miyagai
,
K.
,
Hashida
,
T.
, and
Li
,
V. C.
, “
A Design Approach for the Mechanical Properties of Polypropylene Discontinuous Fiber Reinforced Cementitious Composites by Extrusion Molding
,”
Eng. Fract. Mech.
, Vol. 
70
, Nos. 
7–8
,
2003
, pp. 
853
870
, https://doi.org/10.1016/S0013-7944(02)00154-6
32.
Sakulich
,
A. R.
and
Li
,
V. C.
, “
Nanoscale Characterization of Engineered Cementitious Composites (ECC)
,”
Cem. Concr. Res.
, Vol. 
41
, No. 
2
,
2011
, pp. 
169
175
, https://doi.org/10.1016/j.cemconres.2010.11.001
33.
Klamer
,
E. L.
,
Hordijk
,
D. A.
, and
Janssen
,
H. J. M.
, “
The Influence of Temperature on the Debonding of Externally Bonded CFRP
,”
Spec. Issue ACI
, Vol. 
230
, No. 
88
,
2005
, pp. 
1551
1570
.
34.
Mimura
,
K.
,
Ito
,
H.
, and
Fujioka
,
H.
, “
Improvement of Thermal and Mechanical Properties by Control of Morphologies in PES-Modified Epoxy Resins
,”
Polymer
, Vol. 
41
, No. 
12
,
2000
, pp. 
4451
4459
, https://doi.org/10.1016/S0032-3861(99)00700-4
35.
Premkumar
,
S.
,
Chozhan
,
C. K.
, and
Alagar
,
M.
, “
Studies on Thermal, Mechanical and Morphological Behavior of Caprolactam Blocked Methylenediphenyl Diisocyanate Toughened Bismaleimide Modified Epoxy Matrices
,”
Eur. Polym. J.
, Vol. 
44
, No. 
8
,
2008
, pp. 
2599
2607
, https://doi.org/10.1016/j.eurpolymj.2008.05.031.
36.
Bajpai
,
M.
,
Shukla
,
V.
, and
Habib
,
F.
, “
Development of a Heat Resistant UV-Curable Epoxy Coating
,”
Prog.Org. Coat.
, Vol. 
53
, No. 
4
,
2005
, pp. 
239
245
, https://doi.org/10.1016/j.porgcoat.2004.12.010.
37.
Tälisten
,
B.
and
Blanksvärd
,
T.
, “
Mineral-Based Bonding of Carbon FRP to Strengthen Concrete Structures
,”
J. Compos. Constr.
, Vol. 
11
, No. 
2
,
2007
, pp. 
120
128
, https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(120)
38.
Kurtz
,
S.
and
Balaguru
,
P.
, “
Comparison of Inorganic and Organic Matrices for Strengthening of RC Beams with Carbon Sheets
,”
J. Struct. Eng.
, Vol. 
127
, No. 
1
,
2001
, pp. 
35
42
, https://doi.org/10.1061/(ASCE)0733-9445(2001)127:1(35)
39.
M’Bazaa
,
I.
,
Missihoun
,
M.
, and
Labossiere
,
P.
, “
Strengthening of Reinforced Concrete Beams with CFRP Sheets
,” presented at the
First International Conference on Composites in Infrastructure
, Tucson, AZ, Jan. 15–17
1996
,
University of Arizona
,
Tucson, AZ
, pp. 
746
759
.
40.
Deng
,
Y.
, “
Static and Fatigue Behaviors of RC Beams Strengthened with Carbon Fiber Sheets Bonded by Organic and Inorganic Matrices
,” Ph.D. dissertation,
University of Alabama
, Huntsville, AL,
2002
.
41.
Zhao
,
L. Y.
, “
Characterizations of RC Beams Strengthened with Carbon Fiber Sheets
,” Ph.D. dissertation,
University of Alabama
, Huntsville, AL,
2005
.
42.
Toutanji
,
H.
,
Zhao
,
L.
, and
Zhang
,
Y.
, “
Flexural Behavior of Reinforced Concrete Beams Externally Strengthened with CFRP Sheets Bonded with an Inorganic Matrix
,”
Eng. Struct.
, Vol. 
28
, No. 
4
,
2006
, pp. 
557
566
, https://doi.org/10.1016/j.engstruct.2005.09.011
43.
Wiberg
,
A.
, “
Strengthening of Concrete Beams Using Cementitious Carbon Fiber Composites
,” Ph.D. dissertation,
Royal Institute of Technology
, Stockholm, Sweden,
2003
.
44.
Wu
,
H. C.
and
Teng
,
J.
, “
Concrete Confined with Fiber Reinforced Cement Based Thin Sheet Composites
,” presented at the
Sixth International Symposium on FRP Reinforcement for Concrete Structures
, Singapore, July 8–10,
2003
,
World Scientific Publishing Company
,
Singapore
, pp. 
591
600
.
45.
Badanoiu
,
A.
and
Holmgren
,
J.
, “
Cementitious Composites Reinforced with Continuous Carbon Fibers for Strengthening of Concrete Structures
,”
Cem. Concr. Compos.
, Vol. 
25
, No. 
3
,
2003
, pp. 
387
394
, https://doi.org/10.1016/S0958-9465(02)00054-9
46.
Panjehpour
,
M.
,
Farzadnia
,
N.
,
Demirboga
,
R.
, and
Ali
,
A. A. A.
, “
Behaviour of Repaired High Strength Concrete Cylinders with CFRP Sheets
,”
J. Civ. Eng. Manage.
, Vol. 
22
, No. 
1
,
2015
, pp. 
56
64
, https://doi.org/10.3846/13923730.2014.897965.
47.
Chikh
,
N.
,
Gahmous
,
M.
, and
Benzaid
,
R.
, “
Structural Performance of High Strength Concrete Columns Confined with CFRP Sheets
,” presented at the
World Congress on Engineering
, London, UK, July 4–6,
2012
,
International Association of Engineers
,
Hong Kong
, pp. 
1
3
.
48.
Al-Saidy
,
A. H.
,
Saadatmanesh
,
H.
,
El-Gamal
,
S.
,
Al-Jabri
,
K. S.
, and
Waris
,
B. M.
, “
Structural Behavior of Corroded RC Beams with/without Stirrups Repaired with CFRP Sheets
,”
Mater. Struct.
, Vol. 
49
, No. 
9
,
2016
, pp. 
3733
3747
, https://doi.org/10.1617/s11527-015-0751-y
This content is only available via PDF.
You do not currently have access to this content.