Abstract

Cementitious grouts are widely used in construction industry applications, including joint sealing, flooring, structural repairs, and field-cast connections for prefabricated bridge elements (PBE). The authors of this article have a strong interest in the latter application. PBEs facilitate accelerated bridge construction, increase safety, and minimize the inconveniences to the traveling public, while delivering a superior product. While these concrete elements are produced off-site with higher production levels, they rely on the field-cast grout material to complete the connections between them. The ideal grout for PBE connections is self-consolidating, has high early strength, good dimensional stability, good durability, and bonds well to precast concrete. The most common grout type used in PBE connections is based on cement or cementitious materials. This type of grout, however, has at times shown serviceability issues that are mainly associated with dimensional stability (primarily shrinkage), which might also influence the bond to the concrete element. The authors of this article are investigating the possibility of including internal curing (IC) in cementitious grouts with the aim of partially reducing or mitigating most of the shrinkage observed in these materials. The research discusses the particularities encountered in designing IC cementitious grouts, as opposed to conventional concretes, and evaluates the effect that IC has on several grout material properties with special focus on those relevant to PBE connection applications: shrinkage and bond. Results indicate that the inclusion of IC in cementitious grouts reduces both autogenous and drying shrinkage. The effect that this may have on the bond performance is also discussed from a mechanical and microstructural point of view. Finally, an initial cost analysis is provided.

References

1.
Culmo
,
M. P.
,
Connection Details for Prefabricated Bridge Elements and Systems, No. FHWA-IF-09-010
,
Federal Highway Adminisration
,
Washington, DC
,
2009
, 568p.
2.
Hossain
,
A. B.
and
Weiss
,
J.
, “
Assessing Residual Stress Development and Stress Relaxation in Restrained Concrete Ring Specimens
,”
Cem. Concr. Compos.
, Vol. 
26
, No. 
5
,
2004
, pp. 
531
540
, https://doi.org/10.1016/S0958-9465(03)00069-6
3.
Minnesota Department of Transportation “
Transportation Research Synthesis: Bridge Deck Cracking
,” TRS1105,
Minnesota Department of Transportation, St. Paul
,
MN
,
2011
, 11p.
4.
Deng
,
Y.
,
Phares
,
B.
, and
Harrington
,
D.
, “
Causes of Early Cracking in Concrete Bridge Decks
,” CP Road Map, Ames,
IA
,
2016
, 6p.
5.
Swenty
,
M. K.
and
Graybeal
,
B. A.
,
Material Characterization of Field-Cast Connection Grouts, Report No. FHWA-HRT-13-041
,
Federal Highway Administration
,
Washington, DC
,
2013
, 100p.
6.
ASTM C1107-17
Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Nonshrink)
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
7.
Graybeal
,
B.
,
Haber
,
Z.
,
De la Varga
,
I.
, and
Spragg
,
R.
, “
Accelerated Construction of Robust Bridges through Material and Detailing Innovations
,” presented at the
Ninth International Conference on Bridge Maintenance, Safety, and Management
, Melbourne, Australia, July 9–13,
2018
,
Taylor and Francis
,
London, United Kingdom
.
8.
Wall
,
J. S.
and
Shrive
,
N. G.
, “
Factors Affecting Bond Between New and Old Concrete
,”
Mater. J.
, Vol. 
85
, No. 
2
,
1988
, pp. 
117
125
.
9.
Silfwerbrand
,
J.
, “
Bonded Concrete Overlays - Research Needs
,” presented at the
Second International RILEM Symposium on Advances in Concrete through Science and Engineering
, Quebec City, Canada, Sep. 11–13,
2006
,
RILEM Publications SARL
,
Bagneux, France
, pp. 
193
206
.
10.
De la Varga
,
I.
,
Munoz
,
J.
,
Bentz
,
D. P.
,
Stutzman
,
P. E.
, and
Graybeal
,
B.
, “
Grout-Concrete Interface Bond Performance: Effect of Interface Moisture on the Tensile Bond Strength and Grout Microstructure
,”
Constr. Build. Mater.
, Vol. 
170
,
2018
, pp. 
747
756
, https://doi.org/10.1016/j.conbuildmat.2018.03.076
11.
Bentz
,
D. P.
,
De la Varga
,
I.
,
Muñoz
,
J. F.
,
Spragg
,
R. P.
,
Graybeal
,
B. A.
,
Hussey
,
D. S.
,
Jacobson
,
D. L.
,
Jones
,
S. Z.
, and
LaManna
,
J. M.
, “
Influence of Substrate Moisture State and Roughness on Interface Microstructure and Bond Strength: Slant Shear vs. Pull-Off Testing
,”
Cem. Concr. Compos.
, Vol. 
87
,
2018
, pp. 
63
72
, https://doi.org/10.1016/j.cemconcomp.2017.12.005
12.
Bentz
,
D. P.
and
Weiss
,
J.
,
Internal Curing: A 2010 State-of-the-Art Review, Report No. NISTIR 7765
,
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2011
, 94p.
13.
De la Varga
,
I.
and
Graybeal
,
B. A.
, “
Dimensional Stability of Grout-Type Materials Used as Connections between Prefabricated Concrete Elements
,”
J. Mater. Civ. Eng.
, Vol. 
27
, No. 
9
,
2015
, pp. 
1
10
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001212
14.
ASTM C1698-09
Standard Test Method for Autogenous Strain of Cement Paste and Mortar
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
15.
De la Varga
,
I.
,
Haber
,
Z.
, and
Graybeal
,
B. A.
, “
Performance of Grouted Connections for Prefabricated Bridge Elements - Part I: Material-Level Investigation on Shrinkage and Bond
,” presented at the
2016 PCI Convention and National Bridge Conference
, Nashville, TN, March
2016
,
Precast/Prestressed Concrete Institute
,
Chicago, IL
.
16.
Haber
,
Z.
,
De la Varga
,
I.
, and
Graybeal
,
B. A.
, “
Performance of Grouted Connections for Prefabricated Bridge Elements. Part II: Component-Level Investigation on Bond and Cracking
,” presented at the
2016 PCI Convention and National Bridge Conference
, Nashville, TN, March
2016
,
Precast/Prestressed Concrete Institute
,
Chicago, IL
.
17.
De la Varga
,
I.
,
Castro
,
J.
,
Bentz
,
D.
, and
Weiss
,
J.
, “
Application of Internal Curing for Mixtures Containing High Volumes of Fly Ash
,”
Cem. Concr. Compos.
, Vol. 
34
, No. 
9
,
2012
, pp. 
1001
1008
, https://doi.org/10.1016/j.cemconcomp.2012.06.008
18.
Le Chatelier
,
H.
, “
Sur les changements de volume qui accompagnent le durcissement des ciments
,”
Bulletin de la Société d‘Encouragement pour l‘Industrie Nationale
, 5th ed.,
Société d‘Encouragement pour l‘Industrie Nationale
,
Paris, France
,
1900
, pp. 
54
57
.
19.
Jensen
,
O. M.
and
Hansen
,
P. F.
, “
Water-Entrained Cement-Based Materials: I. Principles and Theoretical Background
,”
Cem. Concr. Res.
, Vol. 
31
, No. 
4
,
2001
, pp. 
647
654
, https://doi.org/10.1016/S0008-8846(01)00463-X
20.
Bentz
,
D. P.
,
Lura
,
P.
, and
Roberts
,
J. W.
, “
Mixture Proportioning for Internal Curing
,”
Concr. Int.
, Vol. 
27
, No. 
2
,
2005
, pp. 
35
40
.
21.
ASTM C1437-15
Standard Test Method for Flow of Hydraulic Cement Mortar
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
22.
ASTM C1761-17
Standard Specification for Lightweight Aggregate for Internal Curing of Concrete
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
23.
Mönnig
,
S.
, “
Water Saturated Super-Absorbent Polymers Used in High Strength Concrete
,”
Otto-Graf-Journal
, Vol. 
16
, No. 
16
,
2005
, pp. 
193
202
.
24.
Mönnig
,
S.
, “
Superabsorbing Additions in Concrete: Applications, Modelling and Comparison of Different Internal Water Sources
,” Eng.D. thesis,
University of Stuttgart
, Stuttgart, Germany,
2009
.
25.
Filho
,
R. D. T.
,
Silva
,
E. F.
,
Lopes
,
A. N. M.
,
Mechtcherine
,
V.
, and
Dudziak
,
L.
, “
Effect of Superabsorbent Polymers on the Workability of Concrete and Mortar
,”
Application of Super Absorbent Polymers (SAP) in Concrete Construction
, 2nd ed.,
Mechtcherine
V.
and
Reinhardt
H.-W.
, Eds.,
Springer
,
New York, NY
,
2012
, pp. 
39
50
.
26.
ASTM C1608-17
Standard Test Method for Chemical Shrinkage of Hydraulic Cement Paste
,
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
27.
ASTM C185-15
Standard Test Method for Air Content of Hydraulic Cement Mortar
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
28.
ASTM C191-13
Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle
,
ASTM International
,
West Conshohocken, PA
,
2013
, www.astm.org
29.
ASTM C1679-17
Standard Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
30.
ASTM C109-16
Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
31.
ASTM C157-17
Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
32.
ASTM C1583-13
Standard Test Method for Tensile Strength of Concrete Surfaces and the Bond Strength or Tensile Strength of Concrete Repair and Overlay Materials by Direct Tension (Pull-off Method)
,
ASTM International
,
West Conshohocken, PA
,
2013
, www.astm.org
33.
ICRI Committee 310 “
Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings, Polymer Overlays, and Concrete Repair
,”
International Concrete Repair Institute, St. Paul
,
MN
,
2013
, 54p.
34.
Beyene
,
M. A.
,
Munoz
,
J. F.
,
Meininger
,
R. C.
, and
Di Bella
,
C.
, “
Effect of Internal Curing as Mitigation to Minimize Alkali-Silica Reaction Damage
,”
Mater. J.
, Vol. 
114
, No. 
3
,
2017
, pp. 
417
428
.
35.
Haber
,
Z. B.
,
Munoz
,
J. F.
, and
Graybeal
,
B. A.
, “
Field Testing of an Ultra-High Performance Concrete Overlay
,” No. FHWA-HRT-17-096,
Federal Highway Administration
,
Washington, DC
,
2017
, 60p.
36.
Bentz
,
D. P.
,
Jones
,
S. Z.
,
Peltz
,
M. A.
, and
Stutzman
,
P. E.
, “
Influence of Internal Curing on Properties and Performance of Cement-Based Repair Materials
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2015
, 36p.
37.
Justs
,
J.
,
Wyrzykowski
,
M.
,
Winnefeld
,
F.
,
Bajare
,
D.
, and
Lura
,
P.
, “
Influence of Superabsorbent Polymers on Hydration of Cement Pastes with Low Water-to-Binder Ratio: A Calorimetry Study
,”
J. Therm. Anal. Calorim.
, Vol. 
115
, No. 
1
,
2014
, pp. 
425
432
, https://doi.org/10.1007/s10973-013-3359-x
38.
Cusson
,
D.
, “
Effect of Blended Cements on Effectiveness of Internal Curing in HPC
,”
ACI SP-256-9, Internal Curing of High-Performance Concrete: Lab and Field Experiences
,
Mohr
B. J.
and
Bentz
D. P.
, Eds.,
National Research Council Canada
,
Ottawa, Canada
,
2009
, pp. 
1
16
.
39.
Jensen
,
O. M.
and
Hansen
,
P. F.
, “
Water-Entrained Cement-Based Materials: II. Experimental Observations
,”
Cem. Concr. Res.
, Vol. 
32
, No. 
6
,
2002
, pp. 
973
978
, https://doi.org/10.1016/S0008-8846(02)00737-8
40.
Mechtcherine
,
V.
,
Dudziak
,
L.
, and
Hempel
,
S.
, “
Mitigating Early Age Shrinkage of Concrete by Using Superabsorbent Polymers (SAP)
,” presented at the
Eighth International Conference on Creep, Shrinkage and Durability Mechanics of Concrete and Concrete Structures (CONCREEP-8)
, Ise-Shima, Japan, Sep. 30–Oct. 2, 2008,
Japan Concrete Institute
,
Tokyo, Japan
, pp. 
847
854
.
41.
Mechtcherine
,
V.
and
Dudziak
,
L.
, “
Effects of Superabsorbent Polymers on Shrinkage of Concrete: Plastic, Autogenous, Drying
,”
Application of Super Absorbent Polymers (SAP) in Concrete Construction
, 2nd ed.,
Mechtcherine
V.
and
Reinhardt
H.-W.
, Eds.,
Springer
,
New York, NY
,
2012
, pp. 
63
98
.
This content is only available via PDF.
You do not currently have access to this content.