Abstract

Superabsorbent polymers (SAP) have been investigated as an additive for use in the manufacture of internally cured concrete. The ability of SAP to absorb and desorb fluid is important for the design of internally cured concrete mixtures. Internal curing research on lightweight aggregates (LWA) has typically focused on the absorption of water in the LWA internal curing agent. However, when SAP is used, the absorption test should be performed using a pore solution with a defined ionic concentration. To address the effect of the ionic composition of the pore solution on SAP absorption, pore solutions were extracted from fresh cementitious pastes, and their composition was evaluated using X-ray fluorescence. This study characterizes the absorption and desorption of a commercially available SAP, using both simulated and extracted pore solutions with a range of ionic concentrations. The teabag method was implemented to measure the absorption of the SAP. As expected, the absorption of the SAP decreased in solutions with higher ionic concentrations. In addition to studying solutions extracted from ordinary portland cement pastes, the effects of the inclusion of supplementary cementitious materials on the SAP absorption were studied. Results showed that the inclusion of supplementary cementitious materials had a relatively minor impact on the SAP absorption, primarily due to a dilution of the ionic concentration of the pore solution. This article examined the desorption of the SAP in two conditions: a reduction in the ambient relative humidity and after exposure of the SAP to solutions with a higher ionic concentration. It was observed that SAP-containing solutions with a higher ionic concentration had a reduced rate of desorption and a reduced overall desorption at a given relative humidity. In addition, moving the SAP from a solution with a lower ionic concentration to a more highly concentrated solution resulted in desorption. An equation was developed that expresses the SAP absorption as a function of the pH of the soaking solution. The expression was used to predict the desorption of SAP due to an increase in the ionic concentrations in a hydrating system. This equation was used to show that the desorption of SAP due to changes in the pore solution ionic concentration were significant during the first 72 hours. The findings and the techniques used in this study are meant to be used as an example for the characterization of SAP in concrete internal curing applications.

References

1.
RILEM Technical Committee 225
Application of Superabsorbent Polymers (SAP) in Concrete Construction
,
Mechtcherine
V.
and
Reinhardt
H.-W.
, Eds.,
Springer
,
Dordrecht, Germany
,
2012
, 159p, https://doi.org/10.1007/978-94-007-2733-5
2.
ACI Committee 308-213 “
R-13 Report on Internally Cured Concrete Using Prewetted Absorptive Lightweight Aggregate
,” American Concrete Institute, Farmington Hills, MI,
2013
, pp. 
1
12
.
3.
Castro
,
J.
,
Peled
,
A.
, and
Weiss
,
W. J.
, “
Full and Partial Internal Curing in Mortar in Terms of Internal Relative Humidity, Hydration and Performance
,” presented at the
Eleventh International Society of Concrete Pavements
, San Antonio, TX, Aug. 28–Sep. 1,
2016
,
International Society for Concrete Pavements
,
Bridgeville, PA
.
4.
Kovler
,
K.
and
Jensen
,
O. M.
, “
Novel Techniques for Concrete Curing
,”
Concr. Int.
, Vol. 
27
, No. 
9
,
2005
, pp. 
39
42
.
5.
RILEM Technical Committee TC 181-EAS
Report 25: Early Age Cracking in Cementitious Systems
,
RILEM Publications
,
Paris, France
,
2003
, 337p.
6.
Cusson
,
D.
and
Hoogeveen
,
T.
, “
Internal Curing of High-Performance Concrete with Pre-Soaked Fine Lightweight Aggregate for Prevention of Autogenous Shrinkage Cracking
,”
Cem. Concr. Res.
, Vol. 
38
, No. 
6
,
2008
, pp. 
757
765
, https://doi.org/10.1016/j.cemconres.2008.02.001
7.
Bentz
,
D. P.
and
Weiss
,
W. J.
, “
Internal Curing: A 2010 State of the Art Review
,”
NIST Report 7765
,
National Institute of Standards and Technology
,
2011
, 82p.
8.
Montanari
,
L.
,
Suraneni
,
P.
, and
Weiss
,
W. J.
, “
Accounting for Water Stored in Superabsorbent Polymers in Increasing the Degree of Hydration and Reducing the Shrinkage of Internally Cured Cementitious Mixtures
,”
Adv. Civ. Eng. Mater.
, Vol. 
6
, No. 
1
,
2017
, pp. 
583
599
, https://doi.org/10.1520/ACEM20170098
9.
Hasholt
,
M. T.
,
Jensen
,
O. M.
,
Kovler
,
K.
, and
Zhutovsky
,
S.
, “
Can Superabsorbent Polymers Mitigate Autogenous Shrinkage of Internally Cured Concrete without Compromising the Strength?
,”
Constr. Build. Mater.
, Vol. 
31
,
2012
, pp. 
226
230
, https://doi.org/10.1016/j.conbuildmat.2011.12.062
10.
Schröfl
,
C.
,
Mechtcherine
,
V.
, and
Gorges
,
M.
, “
Relation between the Molecular Structure and the Efficiency of Superabsorbent Polymers (SAP) as Concrete Admixture to Mitigate Autogenous Shrinkage
,”
Cem. Concr. Res.
, Vol. 
42
, No. 
6
,
2012
, pp. 
865
873
, https://doi.org/10.1016/j.cemconres.2012.03.011
11.
Jensen
,
O. M.
and
Hansen
,
P. F.
, “
Water-Entrained Cement-Based Materials: II. Experimental Observations
,”
Cem. Concr. Res.
, Vol. 
32
, No. 
6
,
2002
, pp. 
973
978
, https://doi.org/10.1016/S0008-8846(02)00737-8
12.
Wang
,
F.
,
Zhou
,
Y.
,
Peng
,
B.
,
Liu
,
Z.
, and
Hu
,
S.
, “
Autogenous Shrinkage of Concrete with Super-Absorbent Polymer
,”
ACI Mater. J.
, Vol. 
106
, No. 
2
,
2009
, pp. 
123
127
.
13.
Shah
,
S. P.
,
Weiss
,
W. J.
, and
Yang
,
W.
, “
Shrinkage Cracking—Can it be Prevented?
,”
Concr. Int.
, Vol. 
20
, No. 
4
,
1998
, pp. 
51
55
.
14.
Geiker
,
M.
,
Bentz
,
D.
, and
Jensen
,
O.
, “
Mitigating Autogenous Shrinkage by Internal Curing
,”
ACI SP-218
,
2004
, pp. 
143
148
.
15.
Snyder
,
K. A.
and
Bentz
,
D. P.
, “
Protected Paste Volume in Concrete: Extension to Internal Curing Using Saturated Lightweight Fine Aggregate
,”
Cem. Concr. Res.
, Vol. 
29
, No. 
11
,
1999
, pp. 
1863
1867
, https://doi.org/10.1016/S0008-8846(99)00178-7
16.
Montanari
,
L.
,
Amirkhanian
,
A. N.
,
Suraneni
,
P.
, and
Weiss
,
W. J.
, “
Toward a Mixture Design Methodology for Partial Volumes of Internal Curing Water Based on the Reduction of Autogenous Shrinkage
,”
J. Mater. Civ. Eng.
(in press).
17.
Friggle
,
T.
and
Reeves
,
D.
, “
Internal Curing of Concrete Paving: Laboratory and Field Experience
,”
ACI SP-256
,
2008
, pp. 
71
80
.
18.
Lura
,
P.
,
Felix
,
D.
,
Loukili
,
A.
,
Kovler
,
K.
, and
Jensen
,
O. M.
, “
Compressive Strength of Cement Pastes and Mortars with Superabsorbent Polymers
,” presented at the
International RILEM Conference on Volume Changes of Hardening Concrete: Testing and Mitigation
, Lyngby, Denmark, Aug. 20–23,
2006
,
RILEM
,
Paris, France
.
19.
Farzanian
,
K.
,
Pimenta Teixeira
,
K.
,
Perdigão Rocha
,
I.
, De
Sa Carneiro
,
L.
, and
Ghahremaninezhad
,
A.
, “
The Mechanical Strength, Degree of Hydration, and Electrical Resistivity of Cement Pastes Modified with Superabsorbent Polymers
,”
Constr. Build. Mater.
, Vol. 
109
,
2016
, pp. 
156
165
, https://doi.org/10.1016/j.conbuildmat.2015.12.082
20.
Henkensiefken
,
R.
,
Castro
,
J.
,
Bentz
,
D.
,
Nantung
,
T.
, and
Weiss
,
J.
, “
Water Absorption in Internally Cured Mortar Made with Water-Filled Lightweight Aggregate
,”
Cem. Concr. Compos.
, Vol. 
39
, No. 
10
,
2009
, pp. 
883
892
, https://doi.org/10.1016/j.cemconres.2009.06.009
21.
Henkensiefken
,
R.
,
Bentz
,
D. P.
,
Nantung
,
T.
, and
Weiss
,
W. J.
, “
Volume Change and Cracking in Internally Cured Mixtures Made with Saturated Lightweight Aggregate under Sealed and Unsealed Conditions
,”
Cem. Concr. Compos.
, Vol. 
31
, No. 
7
,
2009
, pp. 
427
437
, https://doi.org/10.1016/j.cemconcomp.2009.04.003
22.
Schlitter
,
J.
,
Henkensiefken
,
R.
,
Castro
,
J.
,
Raoufi
,
K.
, and
Weiss
,
J.
,
Development of Internally Cured Concrete for Increased Service Life, Final Report FHWA/IN/JTRP-2010/10
,
Indiana Department of Transportation
,
West Lafayette, IN
,
2010
, 289p.
23.
Byard
,
B. E.
,
Schindler
,
A. K.
, and
Barnes
,
R. W.
, “
Cracking Tendency of Lightweight Aggregate Deck Concrete
,”
ACI Mater. J.
, Vol. 
111
, No. 
2
,
2010
, pp. 
179
188
.
24.
Bentz
,
D. P.
, “
Influence of Internal Curing Using Lightweight Aggregates on Interfacial Transition Zone Percolation and Chloride Ingress in Mortars
,”
Cem. Concr. Compos.
, Vol. 
31
, No. 
5
,
2009
, pp. 
285
289
, https://doi.org/10.1016/j.cemconcomp.2009.03.001
25.
Di Bella
,
C.
,
Villani
,
C.
,
Phares
,
N.
,
Hausheer
,
E.
, and
Weiss
,
J.
, “
Chloride Transport and Service Life in Internally Cured Concrete
,” presented at the
Structures Congress 2012
, Chicago, IL, Mar. 29–31,
American Society of Civil Engineers
,
Reston, VA
,
2012
, pp. 
686
698
.
26.
Craeye
,
B.
,
Geirnaert
,
M.
, and
Schutter
,
G. D.
, “
Super Absorbing Polymers as an Internal Curing Agent for Mitigation of Early-Age Cracking of High-Performance Concrete Bridge Decks
,”
Constr. Build. Mater.
, Vol. 
25
, No. 
1
,
2011
, pp. 
1
13
, https://doi.org/10.1016/j.conbuildmat.2010.06.063
27.
Bentz
,
D. P.
,
Lura
,
P.
, and
Roberts
,
J. W.
, “
Mixture Proportioning for Internal Curing
,”
Concr. Int.
, Vol. 
27
, No. 
2
,
2005
, pp. 
35
40
.
28.
ASTM C150/150M
Standard Specification for Portland Cement
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
29.
ASTM C618
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
30.
ASTM C114
Standard Test Methods for Chemical Analysis of Hydraulic Cement
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
31.
Rajabipour
,
F.
,
Sant
,
G.
, and
Weiss
,
J.
, “
Interactions between Shrinkage Reducing Admixtures (SRA) and Cement Paste’s Pore Solution
,”
Cem. Concr. Res.
, Vol. 
38
, No. 
5
,
2008
, pp. 
606
615
, https://doi.org/10.1016/j.cemconres.2007.12.005
32.
Tsui-Chang
,
M.
,
Suraneni
,
P.
,
Montanari
,
L.
, and
Weiss
,
W. J.
, “
Determination of Chemical Composition and Electrical Resistivity of Expressed Cementitious Pore Solution Using X-Ray Fluorescence
,”
ACI Mater. J.
(in press).
33.
ASTM C191
Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
34.
Tsui Chang
,
M.
,
Suraneni
,
P.
,
Isgor
,
O. B.
,
Trejo
,
D.
, and
Weiss
,
W. J.
, “
Using X-Ray Fluorescence to Assess the Chemical Composition and Resistivity of Simulated Cementitious Pore Solutions
,”
Int. J. Adv. Eng. Sci. Appl. Math.
, Vol. 
9
, No. 
3
,
2017
, pp. 
136
143
, https://doi.org/10.1007/s12572-017-0181-x
35.
Parrot
,
L. J.
and
Killoh
,
D. C.
, “
Prediction of Cement Hydration
,”
Br. Ceram. Proc.
, Vol. 
35
,
1984
, pp. 
41
53
.
36.
Lothenbach
,
B.
and
Winnefeld
,
F.
, “
Thermodynamic Modelling of the Hydration of Portland Cement
,”
Cem. Concr. Res.
, Vol. 
36
, No. 
2
,
2006
, pp. 
209
226
, https://doi.org/10.1016/j.cemconres.2005.03.001
37.
Powers
,
T. C.
and
Brownyard
,
T. L.
, “
Studies of the Physical Properties of Hardened Portland Cement Paste
,”
J. Am. Concr. Inst.
, Vol. 
43
, No. 
9
,
1946
, pp. 
469
504
.
38.
Miller
,
A. E.
,
Barrett
,
T. J.
, and
Weiss
,
W. J.
, “
Evaluation of Superabsorbent Polymers for Use in Cementitious Systems for the Purpose of Mitigating Autogenous Shrinkage
,” presented at the
International RILEM Conference on the Application of Superabsorbent Polymers and Other New Admixtures in Concrete Construction
, Dresden, Germany, Sep. 
14
17
,
2014
,
RILEM
,
Paris, France
.
39.
Schröfl
,
C.
,
Snoeck
,
D.
, and
Mechtcherine
,
V.
, “
A Review of Characterisation Methods for Superabsorbent Polymer (SAP) Samples to be Used in Cement-Based Construction Materials: Report of the RILEM TC 260-RSC
,”
Mater. Struct.
, Vol. 
50
, No. 
4
,
2017
, pp. 
197
216
, https://doi.org/10.1617/s11527-017-1060-4
40.
Zhao
,
Y.
,
Su
,
H.
,
Fang
,
L.
, and
Tan
,
T.
, “
Superabsorbent Hydrogels from Poly(Aspartic Acid) with Salt-, Temperature- and pH-Responsiveness Properties
,”
Polymer
, Vol. 
46
, No. 
14
,
2005
, pp. 
5368
5376
, https://doi.org/10.1016/j.polymer.2005.04.015
41.
Zohuriaan-Mehr
,
M. J.
and
Kabiri
,
K.
, “
Superabsorbent Polymer Materials: A Review
,”
Iran Polym. J.
, Vol. 
17
, No. 
6
,
2008
, pp. 
451
477
.
42.
Mönnig
,
S.
, “
Superabsorbing Additions in Concrete—Applications, Modelling and Comparison of Different Internal Water Sources
,” Ph.D. Thesis,
University of Stuttgart
, Stuttgart, Germany,
2009
.
43.
Farzanian
,
K.
and
Ghahremaninezhad
,
A.
, “
The Effect of the Capillary Forces on the Desorption of Hydrogels in Contact with a Porous Cementitious Material
,”
Mater. Struct.
, Vol. 
50
, No. 
5
,
2017
, pp. 
216
231
, https://doi.org/10.1617/s11527-017-1068-9
44.
Castro
,
J.
,
Keiser
,
L.
,
Golias
,
M.
, and
Weiss
,
J.
, “
Absorption and Desorption Properties of Fine Lightweight Aggregate for Application to Internally Cured Concrete Mixtures
,”
Cem. Concr. Compos.
, Vol. 
33
, No. 
10
,
2011
, pp. 
1001
1008
, https://doi.org/10.1016/j.cemconcomp.2011.07.006
45.
ASTM C1761
Standard Specification for Lightweight Aggregate for Internal Curing of Concrete
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
46.
Esteves
,
L. P.
, “
Superabsorbent Polymers: On Their Interaction with Water and Pore Fluid
,”
Cem. Concr. Compos.
, Vol. 
33
, No. 
7
,
2011
, pp. 
717
724
, https://doi.org/10.1016/j.cemconcomp.2011.04.006
47.
Andersson
,
K.
,
Allard
,
B.
,
Bengtsson
,
M.
, and
Magnusson
,
B.
, “
Chemical Composition of Cement Pore Solutions
,”
Cem. Concr. Res.
, Vol. 
19
, No. 
3
,
1989
, pp. 
327
332
, https://doi.org/10.1016/0008-8846(89)90022-7
48.
Zhu
,
Q.
,
Barney
,
C. W.
, and
Erk
,
K. A.
, “
Effect of Ionic Crosslinking on the Swelling and Mechanical Response of Model Superabsorbent Polymer Hydrogels for Internally Cured Concrete
,”
Mater. Struct.
, Vol. 
48
, No. 
7
,
2015
, pp. 
2261
2276
, https://doi.org/10.1617/s11527-014-0308-5
49.
Horkay
,
F.
,
Tasaki
,
I.
, and
Basser
,
P. J.
, “
Effect of Monovalent-Divalent Cation Exchange on the Swelling of Polyacrylate Hydrogels in Physiological Salt Solutions
,”
Biomacromolecules
, Vol. 
2
, No. 
1
,
2001
, pp. 
195
199
, https://doi.org/10.1021/bm0056153
50.
Shehata
,
M. H.
,
Thomas
,
M. D. A.
, and
Bleszynski
,
R. F.
, “
The Effects of Fly Ash Composition on the Chemistry of Pore Solution in Hydrated Cement Pastes
,”
Cem. Concr. Res.
, Vol. 
29
, No. 
12
,
1999
, pp. 
1915
1920
, https://doi.org/10.1016/S0008-8846(99)00190-8
51.
Vollpracht
,
A.
,
Lothenbach
,
B.
,
Snellings
,
R.
, and
Haufe
,
J.
, “
The Pore Solution of Blended Cements: A Review
,”
Mater. Struct.
, Vol. 
49
, No. 
8
,
2016
, pp. 
3341
3367
, https://doi.org/10.1617/s11527-015-0724-1
52.
Greenspan
,
L.
, “
Humidity Fixed Points of Binary Saturated Aqueous Solutions
,”
J. Res. Natl. Bur. Stand.—A. Phys. Chem.
, Vol. 
81A
, No. 
1
,
1977
, pp. 
89
96
, https://doi.org/10.6028/jres.081A.011
This content is only available via PDF.
You do not currently have access to this content.