Abstract

The purpose of the link column frame is to provide acceptable collapse prevention performance and to allow for easy repairs following a moderate earthquake. The experimental and analytical studies that are presented in this article mainly focus on the behavior of normal and link column reinforced concrete (RC) frames with different connection configurations. Quasi-static cyclic load experimental results are presented and discussed for seven 1:3 scaled RC frames with and without link columns. There are various connections between the main beam and the link column. With respect to experimental results and using ANSYS software, the finite element model related to these frames is made and calibrated, and then nonlinear analysis under cyclic static loading is performed. The experimental results show that the yield strength and ultimate strength capacities of the link column frames increase with a decrease in relative story drifts, especially in the hinged link column frame that was designed according to IS 12303-1987, Criteria for Design of RCC Hinges. Greater amounts of energy were dissipated by the link column frame, which has a hinge connection designed according to IS 12303-1987; this connection was found to be more effective and reliable. When compared with the normal frame, the link column frame with the proper connection dissipates more energy by shear yielding of the link beam. The additional link provides extra stiffness to the entire system.

References

1.
Park
,
Y. J.
and
Ang
,
A. H. S.
, “
Mechanistic Seismic Damage Model for Reinforced Concrete
,”
J. Struct. Eng.
, Vol. 
111
, No. 
4
,
1985
, pp. 
722
739
, https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722)
2.
Endo
,
T.
,
Okifuji
,
A.
,
Sugano
,
S.
,
Hayashi
,
T.
,
Shimizu
,
T.
,
Takahara
,
K.
,
Saito
,
H.
, and
Yoneyama
,
Y.
, “
Practices of Seismic Retrofit of Existing Concrete Structures in Japan
,” presented at the
Eighth World Conference on Earthquake Engineering
, San Francisco, CA, July 21–28,
1984
,
International Association for Earthquake Engineering
,
Tokyo, Japan
, pp. 
469
476
.
3.
Ishimura
,
M.
,
Sadasue
,
K.
,
Miyauchi
,
Y.
,
Yokoyama
,
T.
,
Fujii
,
T.
, and
Minami
,
K.
, “
Seismic Performance Evaluation for Retrofitting Steel Brace of Existing RC Buildings with Low-Strength Concrete
,” presented at the
15th World Conference on Earthquake Engineering
, Lisbon, Portugal, Sep. 24–28,
International Association for Earthquake Engineering
,
Tokyo, Japan
,
2012
.
4.
Fujimoto
,
M.
,
Aoyagi
,
T.
,
Ukai
,
K.
,
Wada
,
A.
, and
Saito
,
K.
, “
Structural Characteristics of Eccentric K-braced Frames
,”
Trans. AIJ
, Vol. 
195
,
1972
, pp. 
39
49
, 97.
5.
Ghobarah
,
A.
and
Elfath
,
H. A.
, “
Rehabilitation of a Reinforced Concrete Frame Using Eccentric Steel Bracing
,”
Eng. Struct.
, Vol. 
23
, No. 
7
,
2001
, pp. 
745
755
, https://doi.org/10.1016/S0141-0296(00)00100-0
6.
Soong
,
T. T.
and
Dargush
,
G. F.
,
Passive Energy Dissipation Systems in Structural Engineering
,
John Wiley & Sons
,
Hoboken, NJ
,
1997
, 368p.
7.
Tena-Colunga
,
A.
, “
Mathematical Modelling of the ADAS Energy Dissipation Device
,”
Eng. Struct.
, Vol. 
19
, No. 
10
,
1997
, pp. 
811
821
, https://doi.org/10.1016/S0141-0296(97)00165-X
8.
Dusicka
,
P.
and
Iwai
,
R.
, “
Development of Linked Column Frame System for Seismic Lateral Loads
,” presented at the
Research Frontiers Session at SEI Structures Congress 2007
, Long Beach, CA, May 16–19,
2007
,
American Society of Civil Engineers
,
Reston, VA
, pp. 
1
13
.
9.
De Matteis
,
G.
,
Mazzolani
,
F. M.
, and
Panico
,
S.
, “
Experimental Tests on Pure Aluminium Shear Panels with Welded Stiffeners
,”
Eng. Struct.
, Vol. 
30
, No. 
6
,
2008
, pp. 
1734
1744
, https://doi.org/10.1016/j.engstruct.2007.11.015
10.
Rai
,
D. C.
, “
Inelastic Cyclic Buckling of Aluminum Shear Panels
,”
J. Eng. Mech.
, Vol. 
128
, No. 
11
,
2002
, pp. 
1233
1237
, https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1233)
11.
Mazzolani
,
F. M.
, “
Innovative Metal Systems for Seismic Upgrading of RC Structures
,”
J. Constr. Steel Res.
, Vol. 
64
, Nos.
7–8
,
2008
, pp. 
882
895
, https://doi.org/10.1016/j.jcsr.2007.12.017
12.
Malley
,
J. O.
and
Popov
,
E. P.
, “
Shear Links in Eccentrically Braced Frames
,”
J. Struct. Eng.
, Vol. 
110
, No. 
9
,
1984
, pp. 
2275
2295
, https://doi.org/10.1061/(ASCE)0733-9445(1984)110:9(2275)
13.
Okazaki
,
T.
and
Engelhardt
,
M. D.
, “
Cyclic Loading Behavior of EBF Links Constructed of ASTM A992 Steel
,”
J. Constr. Steel Res.
, Vol. 
63
, No. 
6
,
2007
, pp. 
751
765
, https://doi.org/10.1016/j.jcsr.2006.08.004
14.
Popov
,
E. P.
and
Engelhardt
,
M. D.
, “
Seismic Eccentrically Braced Frames
,”
J. Constr. Steel Res.
, Vol. 
10
,
1988
, pp. 
321
354
, https://doi.org/10.1016/0143-974X(88)90034-X
15.
Engelhardt
,
M. D.
and
Popov
,
E. P.
, “
Experimental Performance of Long Links in Eccentrically Braced Frames
,”
J. Struct. Eng.
, Vol. 
118
, No. 
11
,
1992
, pp. 
3067
3088
, https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3067)
16.
UBC (Uniform Building Code)
,
International Conference of Building Officials
,
Whittier, California
,
1997
, 545p.
17.
Chao
,
S. H.
and
Goel
,
S. C.
, “Performance-Based Seismic Design of EBF Using Target Drift and Yield Mechanism as Performance Criteria,” Research report UMCEE 05-05, American Institute of Steel Construction, Chicago, IL,
2005
, pp. 
173
200
.
18.
Englekirk
,
R. E.
,
Steel Structures: Controlling Behavior through Design
,
John Wiley & Sons
,
Hoboken, NJ
,
1994
, 832p.
19.
Lopes
,
A.
,
Dusicka
,
P.
, and
Berman
,
J.
, “
Lateral Stiffness Approximation of Linked Column Steel Frame System
,” presented at the
Structures Congress 2015
, Portland, OR, April 23–25,
2015
,
American Society of Civil Engineers
,
Reston, VA
, pp. 
2408
2420
.
20.
IS 1893 (Part 1):
2002
,
Criteria for Earthquake Resistant Design of Structures, Part 1: General Provisions and Buildings (Fifth Revision)
,
Bureau of Indian Standards
,
New Delhi, India
,
2002
, www.bis.gov.in
21.
IS 456:
2000
,
Plain and Reinforced Concrete – Code for Practice
,
Bureau of Indian Standard
,
New Delhi, India
,
2000
, www.bis.gov.in
22.
IS 12303:
1987
,
Criteria for Design of RCC Hinges
,
Bureau of Indian Standards
,
New Delhi, India
,
1987
, www.bis.gov.in
23.
Mattock
,
A. H.
, “
Discussion of Rotational capacity of reinforced concrete beams by WG Corley
,”
J. Struct. Div.
, Vol. 
93
, No. 
2
,
1967
, pp. 
519
522
.
24.
Tomazevic
,
M.
,
Earthquake-Resistant Design of Masonry Buildings
, Vol. 1,
Elnashai
A. S.
and
Dowling
P. J.
, eds.,
Imperial College Press
,
London, United Kingdom
,
1999
, 268p.
This content is only available via PDF.
You do not currently have access to this content.