Abstract

Supplementary cementitious material (SCM) is often used to make concrete more durable by improving its mechanistic properties. Rice husk ash (RHA) has the potential of being a SCM because of its pozzolanic activity. Arkansas produces a huge amount of RHA, which mostly originates from the world’s largest rice miller, Riceland Foods, Inc. The RHA produced here is treated as an agricultural waste product and stored in nearby temporary storages, resulting in costly disposal processes as well as environmental hazards. Because the potential of this local RHA as a SCM has not been studied in the past, the present research study aims at exploring the potential of RHA as SCM through laboratory-based experiments. Three different graded RHA (600-RHA, 150-RHA, and 44-RHA) were incorporated in this study. The 600-RHA and 150-RHA were coarse in nature as they had a particle size of 600 μm and 150 μm, respectively, and did not meet the AASHTO M 321-04, Standard Specification for High-Reactivity Pozzolans for Use in Hydraulic-Cement Concrete, Mortar, and Grout, specification. The 600-RHA sample was collected from a plant site and was further ground to produce the 150-RHA sample. The 44-RHA sample was obtained from a commercial industry, and it was incorporated in this study for comparative analyses. Each type of RHA with two different percentages (10 % and 20 %) of replacement of Type I Ordinary Portland Cement (OPC) was investigated in this research. It was found that coarser RHA-modified concrete (600-RHA and 150-RHA) showed reduced strength properties while finer RHA (44-RHA) exhibited improved concrete properties. As a result, 44-RHA can be used as SCM in replacement of the OPC. The coarse RHA could be utilized in backfill and flowable fill as controlled low strength material. Further grinding of the coarse RHA followed by burning may improve the properties of modified concrete.

References

1.
Givi
,
A. N.
,
Rashid
,
S. A.
,
Aziz
,
F. N. A.
, and
Salleh
,
M. A. M.
, “
Contribution of Rice Husk Ash to the Properties of Mortar and Concrete: A Review
,”
J. Am. Sci.
, Vol. 
6
, No. 
3
,
2010
, pp. 
157
165
.
2.
Rashid
,
M. H.
,
Molla
,
M. K. A.
, and
Ahmed
,
T. U.
, “
Durability of Mortar in Presence of Rice Husk Ash
,”
Int. J. Civ. Environ. Struct. Constr. Archit. Eng.
, Vol. 
4
, No. 
7
,
2010
, pp. 
736
739
.
3.
de Sensale
,
G. R.
, “
Strength Development of Concrete with Rice-Husk Ash
,”
Cem. Concr. Compos.
, Vol. 
28
, No. 
2
,
2006
, pp. 
158
160
, https://doi.org/10.1016/j.cemconcomp.2005.09.005
4.
Habeeb
,
G. A.
and
Fayyadh
,
M. M.
, “
Rice Husk Ash Concrete: The Effect of RHA Average Particle Size on Mechanical Properties and Drying Shrinkage
,”
Aust. J. Basic Appl. Sci.
, Vol. 
3
, No. 
3
,
2009
, pp. 
1616
1622
.
5.
Zhang
,
M. H.
,
Lastra
,
R.
, and
Malhotra
,
V. M.
, “
Rice-Husk Ash Paste and Concrete: Some Aspects of Hydration and the Microstructure of the Interfacial Zone between the Aggregate and Paste
,”
Cem. Concr. Res.
, Vol. 
26
, No. 
6
,
1996
, pp. 
963
977
, https://doi.org/10.1016/0008-8846(96)00061-0
6.
Cordeiro
,
G. C.
,
Toledo Filho
,
R. D.
,
Tavares
,
L. M.
,
Fairbairn
,
E. D. M. R.
, and
Hempel
,
S.
, “
Influence of Particle Size and Specific Surface Area on the Pozzolanic Activity of Residual Rice Husk Ash
,”
Cem. Concr. Compos.
, Vol. 
33
, No. 
5
,
2011
, pp. 
529
534
, https://doi.org/10.1016/j.cemconcomp.2011.02.005
7.
Dunstan
,
E. R.
, “
How Does Pozzolanic Reaction Make Concrete Green?
” presented at the
World of Coal Ash (WOCA) Conference
, Denver, CO, May 9–12,
2011
,
University of Kentucky, Center for Applied Energy Research
,
Lexington, KY
, pp. 
1
14
.
8.
Abbas
,
S.
,
Kazmi
,
S. M.
, and
Munir
,
M. J.
, “
Potential of Rice Husk Ash for Mitigating the Alkali-Silica Reaction in Mortar Bars Incorporating Reactive Aggregates
,”
Constr. Build. Mater.
, Vol. 
132
,
2017
, pp. 
61
70
, https://doi.org/10.1016/j.conbuildmat.2016.11.126
9.
Le
,
H. T.
,
Siewert
,
K.
, and
Ludwig
,
H. M.
, “
Alkali Silica Reaction in Mortar Formulated from Self-Compacting High Performance Concrete Containing Rice Husk Ash
,”
Constr. Build. Mater.
, Vol. 
88
,
2015
, pp. 
10
19
, https://doi.org/10.1016/j.conbuildmat.2015.04.005
10.
Akhnoukh
,
A. K.
,
Kamel
,
L. Z.
, and
Barsoum
,
M. M.
, “
Alkali Silica Reaction Mitigation and Prevention Measures for Arkansas Local Aggregates
,”
World Acad. Sci. Eng. Technol. Int. J. Civ. Environ. Struct. Constr. Archit. Eng.
, Vol. 
10
, No. 
2
,
2016
, pp. 
95
99
.
11.
U.S. Department of Agriculture National Agricultural Statistics Service (USDA, NASS), Crop Production, Aug.
2016
, 51p.
12.
Riceland Foods Inc.
About Riceland
, https://web.archive.org/web/20171107061050/www.riceland.com/pages/about-riceland/ (accessed 7 Nov.
2017
).
13.
Zerbino
,
R.
,
Giaccio
,
G.
, and
Isaia
,
G. C.
, “
Concrete Incorporating Rice-Husk Ash without Processing
,”
Constr. Build. Mater.
, Vol. 
25
, No. 
1
,
2011
, pp. 
371
378
, https://doi.org/10.1016/j.conbuildmat.2010.06.016
14.
Khan
,
R.
,
Jabbar
,
A.
,
Ahmad
,
I.
,
Khan
,
W.
,
Khan
,
A. N.
, and
Mirza
,
J.
, “
Reduction in Environmental Problems Using Rice-Husk Ash in Concrete
,”
Constr. Build. Mater.
, Vol. 
30
,
2012
, pp. 
360
365
, https://doi.org/10.1016/j.conbuildmat.2011.11.028
15.
Venkatanarayanan
,
H. K.
and
Rangaraju
,
P. R.
, “
Effect of Grinding of Low-Carbon Rice Husk Ash on the Microstructure and Performance Properties of Blended Cement Concrete
,”
Cem. Concr. Compos.
, Vol. 
55
,
2015
, pp. 
348
363
, https://doi.org/10.1016/j.cemconcomp.2014.09.021
16.
Chakraborty
,
A.
and
Goswami
,
A.
, “
Conservation of Environment by Using Fly Ash and Rice Husk Ash as a Partial Cement Replacement in Concrete
,”
J. Energy Res. Environ. Technol.
, Vol. 
2
, No. 
1
,
2015
, pp. 
9
11
.
17.
Ramesh
,
S.
and
Kavitha
,
S.
, “
Experimental Study on the Behaviour of Cement Concrete with Rice Husk Ash (RHA)
,”
Int. J. Eng. Appl. Sci.
, Vol. 
6
, No. 
2
,
2014
, pp. 
28
44
.
18.
Swaminathen
,
A. N.
and
Ravi
,
S. R.
, “
Use of Rice Husk Ash and Metakaolin as Pozzolonas for Concrete: A Review
,”
Int. J. Appl. Eng. Res.
, Vol. 
11
, No. 
1
,
2016
, pp. 
656
664
.
19.
ASTM C136/C136M-14
Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
20.
ASTM C127-15
Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
21.
ASTM C128-15
Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
22.
Cordeiro
,
G. C.
,
Toledo Filho
,
R. D.
, and
Fairbairn
,
E. D. M. R.
, “
Use of Ultrafine Rice Husk Ash with High-Carbon Content as Pozzolan in High Performance Concrete
,”
Mater. Struct.
, Vol. 
42
, No. 
7
,
2009
, pp. 
983
992
, https://doi.org/10.1617/s11527-008-9437-z
23.
McCraven
,
S.
, “
RHA: Kernel of Wisdom
,”
Prescast Inc. Magazine, National Precast Concrete Association
, https://web.archive.org/web/20170218095941/http://precast.org/2010/07/rha-kernel-of-wisdom/ (accessed 12 July
2017
)
24.
ASTM C143/C143M-15a
Standard Test Method for Slump of Hydraulic-Cement Concrete
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
25.
ASTM C231/C231M-17a
Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
26.
ASTM C138/C138M-17a
Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
27.
ASTM C39/C39M-17a
Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
28.
ASTM C496/C496M-11
Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2004
, www.astm.org
29.
ASTM C78/C78M-16
Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
30.
ASTM C1567-13
Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method)
,
ASTM International
,
West Conshohocken, PA
,
2013
, www.astm.org
31.
Sing
,
K.
, “
The Use of Nitrogen Adsorption for the Characterisation of Porous Materials
,”
Colloids Surf., A
, Vols. 
187–188
,
2001
, pp. 
3
9
, https://doi.org/10.1016/S0927-7757(01)00612-4
32.
Mohamed
,
R. M.
,
Mkhalid
,
I. A.
, and
Barakat
,
M. A.
, “
Rice Husk Ash as a Renewable Source for the Production of Zeolite NaY and its Characterization
,”
Arabian J. Chem.
, Vol. 
8
, No. 
1
,
2015
, pp. 
48
53
, https://doi.org/10.1016/j.arabjc.2012.12.013
33.
Habeeb
,
G. A.
and
Mahmud
,
H. B.
, “
Study on Properties of Rice Husk Ash and Its Use as Cement Replacement Material
,”
Mater. Res.
, Vol. 
13
, No. 
2
,
2010
, pp. 
185
190
, https://doi.org/10.1590/S1516-14392010000200011
34.
Dhir
,
R. K.
and
McCarthy
,
M. J.
,
Concrete in the Service of Mankind: Appropriate Concrete Technology
,
CRC Press
,
Boca Raton, FL
,
1996
, 665p.
35.
Kartini
,
K.
,
Mahmud
,
H. B.
, and
Hamidah
,
M. S.
, “
Strength Properties of Grade 30 Rice Husk Ash Concrete
,” presented at the
31st Conference on Our World in Concrete and Structures
, Singapore, Aug. 16–17,
2006
,
CI-Premier Pte. Ltd.
,
Singapore
, pp. 
16
17
.
36.
Ayers
,
M. E.
,
Wong
,
S. Z.
, and
Zaman
,
W.
, “
Optimization of Flowable Fill Mix Proportions
,”
ACI Spec. Publ.
, Vol. 
150
,
1994
, pp. 
15
38
.
37.
Deng
,
A.
and
Tikalsky
,
P. J.
, “
Geotechnical and Leaching Properties of Flowable Fill Incorporating Waste Foundry Sand
,”
Waste Manag.
, Vol. 
28
, No. 
11
,
2008
, pp. 
2161
2170
, https://doi.org/10.1016/j.wasman.2007.09.018
This content is only available via PDF.
You do not currently have access to this content.