Abstract

Strategic and long-term planning in pavement management systems relies primarily on performance prediction models to ensure efficient and forward-looking management and to set present and future budget requirements. In many developing countries, roads face increasing damage because of the lack of regular maintenance. This reinforces the need to develop a system to predict the deterioration of roads in order to determine the optimal intervention strategies for the road network. This article suggests a Bayesian regression method to develop a performance model for cases when archived pavement data are not available, and this would use expert knowledge as a prior distribution. As such, experts who have worked for a long time with the road and transportation agencies have been interviewed to develop a portion of the input data. Posterior distribution was calculated using the likelihood estimation function based on road condition inspections according to the predefined protocol. The results were prediction models of pavement deterioration based on a mixture of a few onsite inspections interacting with expert knowledge.

References

1.
Prozzi
,
J. A.
and
Madanat
,
S. M.
, “
Incremental Nonlinear Model for Predicting Pavement Serviceability
,”
J. Transp. Eng.
, Vol. 
129
, No. 
6
,
2003
, pp. 
635
641
, https://doi.org/10.1061/(ASCE)0733-947X(2003)129:6(635)
2.
Ortiz-Garcia
,
J. J.
,
Costello
,
S. B.
, and
Snaith
,
M. S.
, “
Derivation of Transition Probability Matrices for Pavement Deterioration Modeling
,”
J. Transp. Eng.
, Vol. 
132
, No. 
2
,
2006
, pp. 
141
161
, https://doi.org/10.1061/(ASCE)0733-947X(2006)132:2(141)
3.
Haas
,
R.
,
Hudson
,
W. R.
, and
Zaniewski
,
J. P.
,
Modern Pavement Management
,
Krieger Pub Co.
,
Malabar, FL
,
1994
, 604p.
4.
Premkumar
,
L.
and
Vavrik
,
W. R.
, “
Enhancing Pavement Performance Prediction Models for the Illinois Tollway System
,”
Int. J. Pavement Res. Technol.
, Vol. 
9
, No. 
1
,
2016
, pp. 
14
19
, https://doi.org/10.1016/j.ijprt.2015.12.002
5.
Lethanh
,
N.
,
Adey
,
B. T.
, and
Fernando
,
D. N.
, “
Optimal Intervention Strategies for Multiple Objects Affected by Manifest and Latent Deterioration Processes
,”
Struct. Infrastruct. Eng.
, Vol. 
11
, No. 
3
,
2014
, pp. 
389
401
, https://doi.org/10.1080/15732479.2014.889178
6.
Li
,
N.
,
Haas
,
R.
, and
Xie
,
W.-C.
, “
Development of a New Asphalt Pavement Performance Prediction Model
,”
Can. J. Civil Eng.
, Vol. 
24
, No. 
4
,
1997
, pp. 
547
559
, https://doi.org/10.1139/l97-001
7.
Kobayashi
,
K.
,
Kaito
,
K.
, and
Lethanh
,
N.
, “
A Statistical Deterioration Forecasting Method Using Hidden Markov Model for Infrastructure Management
,”
Transp. Res. Part B: Method.
, Vol. 
46
, No. 
4
,
2012
, pp. 
544
561
, https://doi.org/10.1016/j.trb.2011.11.008
8.
Haas
,
R.
,
Hudson
,
W. R.
, and
Falls
,
L. C.
,
Pavement Asset Management
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2015
, 432p.
9.
Hong
,
T.
,
Chae
,
M. J.
,
Kim
,
D.
,
Koo
,
C.
,
Lee
,
K. S.
, and
Chin
,
K. H.
, “
Infrastructure Asset Management System for Bridge Projects in South Korea
,”
KSCE J. Civil Eng.
, Vol. 
17
, No. 
7
,
2013
, pp. 
1551
1561
, https://doi.org/10.1007/s12205-013-0408-8
10.
Hong
,
F.
and
Prozzi
,
J. A.
, “
Estimation of Pavement Performance Deterioration Using Bayesian Approach
,”
J. Infrastruct. Syst.
, Vol. 
12
, No. 
2
,
2006
, pp. 
77
86
, https://doi.org/10.1061/(ASCE)1076-0342(2006)12:2(77)
11.
Li
,
Z.
, “
A Probabilistic and Adaptive Approach to Modeling Performance of Pavement Infrastructure, in Faculty of the Graduate School
,” Ph.D. dissertation,
University of Texas at Austin
, Austin, TX,
2005
.
12.
Pandis
,
N.
, “
The Sampling Distribution
,”
Am. J. Orthodontics Dentofacial Orthopedics
, Vol. 
147
, No. 
4
,
2015
, pp. 
517
519
, https://doi.org/10.1016/j.ajodo.2015.01.009
13.
Han
,
D.
,
Kaito
,
K.
, and
Kobayashi
,
K.
, “
Application of Bayesian Estimation Method with Markov Hazard Model to Improve Deterioration Forecasts for Infrastructure Asset Management
,”
KSCE J. Civil Eng.
, Vol. 
18
, No. 
7
,
2014
, pp. 
2107
2119
, https://doi.org/10.1007/s12205-012-0070-6
14.
Congdon
,
P.
,
Applied Bayesian Modelling
,
John Wiley & Sons Ltd.
,
West Sussex, England
,
2003
, 478p.
15.
Lunn
,
D. J.
,
Thomas
,
A.
,
Best
,
N.
, and
Spiegelhalter
,
D.
, “
WinBUGS—A Bayesian Modelling Framework: Concepts, Structure, and Extensibility
,”
Stat. Comput.
, Vol. 
10
, No. 
4
,
2000
, pp. 
325
337
, https://doi.org/10.1023/A:1008929526011
16.
Nagaraja
,
H. N.
, “
Inference in Hidden Markov Models
,”
Technomet.
, Vol. 
48
, No. 
4
,
2006
, pp. 
574
575
, https://doi.org/10.1198/tech.2006.s440
17.
Clark
,
M.
, “
Bayesian Basics, A Conceptual Introduction with Application in R and Stan
,”
University of Michigan, Ann Arbor
,
MI
,
2015
, pp. 
1
57
.
18.
Schwartz
,
J.
,
Godwin
,
R. T.
, and
Giles
,
D. E.
, “
Improved Maximum-Likelihood Estimation of the Shape Parameter in the Nakagami Distribution
,”
J. Stat. Comput. Simul.
, Vol. 
83
, No. 
3
,
2013
, pp. 
434
445
, https://doi.org/10.1080/00949655.2011.615316
19.
Davison
,
A. C.
,
Statistical Models
,
Cambridge University Press
,
Cambridge, United Kingdom
,
2008
, 738p.
20.
Du
,
Y.
,
Liu
,
C.
,
Wu
,
D.
, and
Jiang
,
S.
, “
Measurement of International Roughness Index by Using Z-Axis Accelerometers and GPS
,”
Math. Prob. Eng.
, Vol. 
1
,
2014
, pp. 
1
10
, https://doi.org/10.1155/2014/928980
21.
Sayers
,
M. W.
,
Gillespie
,
T. D.
, and
Queiroz
,
C. A. V.
,
The International Road Roughness Experiment, WTP 45
,
The World Bank
,
Washington, DC
,
1986
, 468p.
22.
Mašović
,
S.
and
Hajdin
,
R.
, “
Modelling of Bridge Elements Deterioration for Serbian Bridge Inventory
,”
Struct. Infrastruct. Eng.
, Vol. 
10
, No. 
8
,
2013
, pp. 
976
987
, https://doi.org/10.1080/15732479.2013.774426
23.
Shahin
,
M. Y.
,
Pavement Management for Airports, Roads and Parking Lots
, 2nd ed.,
Springer Science
,
Berlin, Germany
,
2005
, 572p.
24.
Pandis
,
N.
, “
Statistical Inference with Confidence Intervals
,”
Am. J. Orthodontics Dentofacial Orthopedics
, Vol. 
147
, No. 
5
,
2015
, pp. 
632
634
, https://doi.org/10.1016/j.ajodo.2015.02.014
25.
Amador-Jimenez
,
L. E.
and
Mrawira
,
D.
, “
Bayesian Regression in Pavement Deterioration Modeling: Revisiting the AASHO Road Test Rut Depth Model
,”
Infraestructura Vial
, Vol. 
25
,
2012
, pp. 
28
35
.
26.
Jongsawat
,
N.
and
Premchaiswadi
,
W.
, “
Bayesian Network Inference with Qualitative Expert Knowledge for Decision Support Systems
,” presented at the
11th ACIS International Conference on Software Engineering Artificial Intelligence Networking and Parallel/Distributed Computing
, London, United Kingdom, June 9–11,
2010
,
Institute of Electrical and Electronics Engineers
,
Piscataway, NJ
, pp. 
3
8
.
27.
Medical Research Council “
WinBugs Installation
,” University of Cambridge,
2016
, http://web.archive.org/web/20180613211148/https://www.mrc-bsu.cam.ac.uk/software/bugs/ (accessed 30 Sep. 2016).
This content is only available via PDF.
You do not currently have access to this content.