Abstract

In the application of hot-mix asphalt pavement (HMA), tension at the bottom of the HMA layer creates one of the most challenging distresses to pavement structures, fatigue cracking. Adding rubber to the asphalt mix can extend the life of a pavement and provide an end use for old tires that would otherwise end up in a landfill. It is already known that the initial construction cost of an asphalt rubber mix will be higher than that of a conventional mix. However, the purpose of this article is to investigate if the reduced layer thickness and improved fatigue life will offset the initial cost. After completing a mechanistic analysis using the FHWA software package named 3D Move (University of Nevada, Reno, NV), the pavement thickness required to last for 50,000,000 cycles (the estimated endurance limit) was found to be much less for asphalt rubber mixes as opposed to the reference HMA. The cost to construct one lane mile of the reference mix pavement designed for 113 kph traffic was $190,031, while the cost for asphalt rubber mix at the same speed came out to be $187,629. This is a $2,402 difference. Additionally, the cost to construct 1.6 km of lane of the reference mix and asphalt rubber mix for four more different vehicle speeds was calculated. Overall, analysis showed that Asphalt Rubber (AR) modified asphalt mixtures exhibited significantly lower cost of pavement per 1,000 cycles of fatigue life per mile compared to the conventional HMA mixture.

References

1.
Ambassa
,
Z.
,
Allou
,
F.
,
Petit
,
C.
, and
Eko
,
R. M.
, “
Fatigue Life Prediction of an Asphalt Pavement Subjected to Multiple Axle Loading with Viscoelastic FEM
,”
Constr. Build. Mater.
, Vol. 
43
,
2013
, pp. 
443
452
, https://doi.org/10.1016/j.conbuildmat.2013.02.017
2.
Farina
,
A.
,
Zanett
,
M.
,
Santagata
,
E.
,
Blengini
,
G.
, and
Lanotte
,
M.
,
Life Cycle Assessment of Road Pavements Containing Crumb Rubber from End-of-Life Tires
,
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino
,
Italy
,
2014
, 13p.
3.
Nourelhuda
,
M.
and
Ali
,
G.
,
Asphalt-Rubber Pavement Construction and Performance: The Sudan Experience
,
Sudan University of Science and Technology
,
Khartoum, Sudan
,
2012
, 12p.
4.
Severo
,
L.
,
Ruwer
,
P.
,
Gonçalves
,
F. P.
,
Augusto
,
J.
,
Ceratti
,
P.
, and
Morilha
,
A.
,
Performance of Asphalt-Rubber Hot Mix Overlays at Brazilian Highway
,
2003
, 11p.
5.
Moreno
,
F.
and
Rubio
,
M. C.
, “
Effect of Aggregate Nature on the Fatigue-Cracking Behavior of Asphalt Mixes
,”
Mater. Des.
, Vol. 
47
,
2013
, pp. 
61
67
, https://doi.org/10.1016/j.matdes.2012.12.048
6.
Kaloush
,
K. E.
,
Biligiri
,
K. P.
,
Zeiada
,
W. A.
,
Rodezno
,
M. C.
,
Souliman
,
M. I.
,
Reed
,
J. X.
, and
Stempihar
,
J. J.
,
Laboratory Evaluation of Rubber & Polymer Modified Bituminous Mixtures Constructed in Stockholm
,
Final Report Submitted to Swedish Road Administration
,
Vägverket, Göteborg, Sweden
,
2010
.
7.
Souliman
,
M. I.
and
Kaloush
,
K.
, “
Assessment of the Extended Fatigue Life for Rubber and Polymer Asphalt Mixtures Using Flexural Bending Beam Fatigue Test
,”
Jordan J. Civ. Eng.
, Vol. 
5
, No. 
2
,
2011
, pp. 
210
215
.
8.
Kaloush
,
K. E.
,
Biligiri
,
K. P.
,
Rodezno
,
M. C.
,
Zeiada
,
W. A.
,
Souliman
,
M. I.
, and
Reed
,
J. X.
,
Performance Evaluation of Asphalt Rubber Mixtures in Arizona—Lake Havasu Project
,
Final Report Submitted to the Arizona Department of Transportation
,
Phoenix, AZ
,
2009
.
9.
Souliman
,
M. I.
and
Eifert
,
A.
, “
Impact of Added Rubber on the Mechanical, Mechanistic, and Economical Attributes of Asphaltic Mixtures
,”
Adv. Civ. Eng.
, Vol. 
2016
, 8647801.
10.
Souliman
,
M. I.
,
Mamlouk
,
M.
, and
Kaloush
,
K. E.
, “
Preliminary Prediction of Endurance Limit for Asphalt Rubber Mixtures due to Healing
,”
Can. J. Civ. Eng.
, Vol. 
41
, No. 
11
,
2014
, pp. 
964
969
, https://doi.org/10.1139/cjce-2013-0505
11.
Souliman
,
M. I.
,
Zeiada
,
W.
,
Mamlouk
,
M.
, and
Kaloush
,
K.
, “
Fatigue Endurance Limit for HMA Based on Healing
,”
J. Assoc. Asphalt Paving Technol.
, Vol. 
82
,
2013
, pp. 
503
532
.
12.
Mobasher
,
B.
,
Mamlouk
,
M. S.
, and
Lin
,
H.-M.
, “
Evaluation of Crack Propagation Properties of Asphalt Mixtures
,”
J. Transp. Eng.
, Vol. 
123
, No. 
5
, pp. 
405
413
, https://doi.org/10.1061/(ASCE)0733-947X(1997)123:5(405)
13.
Rodezno
,
M. C.
and
Kaloush
,
K. E.
, “
Implementation of Asphalt-Rubber Mixes into the Mechanistic Empirical Pavement Design Guide
,”
Road Mater. Pavement Des.
, Vol. 
12
, No. 
2
, pp. 
423
439
, https://doi.org/10.1080/14680629.2011.9695252
14.
Xiao
,
F.
,
Amirkhanian
,
S.
, and
Juang
,
C. H.
, “
Prediction of Fatigue Life of Rubberized Asphalt Concrete Mixtures Containing Reclaimed Asphalt Pavement Using Artificial Neural Networks
,”
J. Mater. Civ. Eng.
, Vol. 
21
, No. 
6
, pp. 
253
261
, https://doi.org/10.1061/(ASCE)0899-1561(2009)21:6(253)
15.
Xiao
,
F.
,
Zhao
,
W.
, and
Amirkhanian
,
S. N.
, “
Laboratory Investigation of Fatigue Characteristics of Rubberized Asphalt Mixtures Containing Warm Asphalt Additives at a Low Temperature
,”
J. Test. Eval.
, Vol. 
39
, No. 
2
,
2011
, pp. 
290
295
, https://doi.org/10.1520/JTE102844
16.
Ghabchi
,
R.
,
Zaman
,
M.
, and
Arshadi
,
A.
,
Use of Ground Tire Rubber (GTR) in Asphalt Pavements: Literature Review and DOT Survey
,
University of Oklahoma
,
Norman, OK
,
2016
, 68p.
This content is only available via PDF.
You do not currently have access to this content.