Abstract

This study explores the possibility of using sustainable materials in the form of natural fibers for reinforcing and improving the subgrade strength of pavements. Natural fibers with suitable biochemical properties were used for subgrade reinforcement in the past. Recently, the use of a waste weed, water hyacinth (WH), has garnered popularity as it can reinforce soil with the added advantage of waste utilization. It is well known that natural fibers have limited life when used in soils due to their degradation with time. For improving the longevity of the fiber and enhancing the mechanical performance of the soil-fiber composite, an effort was made in this study to chemically coat the natural fiber surface with nanoparticles of ferric hydroxide. The chemical coating can alter the short-term, as well as long-term, mechanical and chemical characteristics of WH fiber-impregnated soil, which is not well understood. The primary objective of the current study focuses on the short-term behavior of ferric hydroxide-coated WH fiber-impregnated soil that can be used as pavement subgrade. The effect of the chemical coating on WH fibers was initially analyzed by field emission scanning electron microscopy and energy dispersive X-ray tests. The impregnation of nanoparticle on the fiber surface increases surface roughness, coats the porous lumen of the fiber, and increases the tensile strength of the material. A set of tensile strength and moisture absorption tests was done for both untreated and treated WH fiber. The fiber tensile strength of treated fiber (TF) increased by 1.25 times as compared to untreated fiber (UF). The moisture absorption of TF decreased significantly from 580 % for UF to 255 %, indicating that the modified fiber became more hydrophobic. Unconfined compressive strength and direct shear tests were performed to evaluate the improvement in mechanical characteristics of chemically altered randomly distributed fiber-reinforced soil. The increase in cohesion, friction angle, and compressive strength at various compaction states has been discussed for soil reinforced with treated fibers (TF + S), untreated fibers (UF + S), and unreinforced soil (BS). For demonstrating the subgrade performance, soaked and unsoaked California bearing ratio tests were conducted on fiber-reinforced soil. For all the tests conducted on soil combinations (BS, (UF + S), and (TF + S)), the TF-reinforced soil composite performed the best. The results demonstrate the efficacy of using chemically altered natural fiber in increasing the subgrade strength of pavements.

References

1.
Rout
,
J.
,
Misra
,
M.
,
Tripathy
,
S.S.
,
Nayak
,
S.K.
, and
Mohanty
,
A.K.
, “
The Influence of Fibre Treatment on the Performance of Coir-Polyester Composites
,”
Compos. Sci. Technol.
, Vol. 
61
, No. 
9
,
2001
, pp. 
1303
1310
, https://doi.org/10.1016/S0266-3538(01)00021-5
2.
John
,
M.J.
and
Anandjiwala
,
R.D.
, “
Recent Developments in Chemical Modification and Characterization of Natural Fiber‐Reinforced Composites
,”
Polym. Compos.
, Vol. 
29
, No. 
2
,
2008
, pp. 
187
207
, https://doi.org/10.1002/(ISSN)1548-0569
3.
Bledzki
,
A.K.
and
Gassan
,
J.
, “
Composites Reinforced with Cellulose Based Fibres
,”
Prog. Polym. Sci.
, Vol. 
24
, No. 
2
,
1999
, pp. 
221
274
, https://doi.org/10.1016/S0079-6700(98)00018-5
4.
Sivakumar Babu
,
G.L.
and
Vasudevan
,
A.K.
, “
Strength and Stiffness Response of Coir Fiber-Reinforced Tropical Soil
,”
J. Mater. Civil. Eng.
, , Vol. 
20
, No. 
9
.
2008
, pp. 
571
577
, https://doi.org/10.1061/(ASCE)0899-1561(2008)20:9(571)
5.
Álvarez-Mozos
,
J.
,
Abad
,
E.
,
Giménez
,
R.
,
Campo
,
M.A.
,
Goñi
,
M.
,
Arive
,
M.
,
Casalí
,
J.
,
Díez
,
J.
, and
Diego
,
I.
, “
Evaluation of Erosion Control Geotextiles on Steep Slopes. Part 1: Effects on Runoff and Soil Loss
,”
Catena
, Vol. 
118
,
2014
, pp. 
168
178
, https://doi.org/10.1016/j.catena.2013.05.018
6.
Sutherland
,
R.A.
and
Ziegler
,
A.D.
, “
Effectiveness of Coir-Based Rolled Erosion Control Systems in Reducing Sediment Transport from Hillslopes
,”
Appl. Geogr.
, Vol. 
27
, Nos. 
3–4
,
2007
, pp. 
150
164
, https://doi.org/10.1016/j.apgeog.2007.07.011
7.
Wu
,
Y.K.
,
Li
,
Y.B.
, and
Niu
,
B.
, “
Investigation of Mechanical Properties of Randomly Distributed Sisal Fibre Reinforced Soil
,”
Mater. Res. Innov.
, Vol. 
18
, No. 
Sup2
,
2014
, pp. 
S2-953
S2-959
, https://doi.org/10.1179/1432891714Z.000000000511
8.
Subaida
,
E.A.
,
Chandrakaran
,
S.
, and
Sankar
,
N.
, “
Experimental Investigations on Tensile and Pullout Behaviour of Woven Coir Geotextiles
,”
Geotext. Geomembr.
, Vol. 
26
, No. 
5
,
2008
, pp. 
384
392
, https://doi.org/10.1016/j.geotexmem.2008.02.005
9.
Gadi
,
V.K.
,
Bordoloi
,
S.
,
Garg
,
A.
,
Kobayashi
,
Y.
, and
Sahoo
,
L.
, “
Improving and Correcting Unsaturated Soil Hydraulic Properties with Plant Parameters for Agriculture and Bioengineered Slopes
,”
Rhizosphere
, Vol. 
1
,
2016
, pp. 
58
78
, https://doi.org/10.1016/j.rhisph.2016.07.003
10.
Tang
,
C.S.
,
Shi
,
B.
, and
Zhao
,
L.Z.
, “
Interfacial Shear Strength of Fiber Reinforced Soil
,”
Geotext. Geomembr.
, Vol. 
28
, No. 
1
,
2010
, pp. 
54
62
, https://doi.org/10.1016/j.geotexmem.2009.10.001
11.
Gao
,
S.L.
and
Mäder
,
E.
, “
Jute/Polypropylene Composites I. Effect of Matrix Modification
,”
Compos. Sci. Technol.
, Vol. 
66
, No. 
7
,
2006
, pp. 
952
963
.
12.
Zakaria
,
S.
and
Poh
,
L.K.
, “
Polystyrene-Benzoylated EFB Reinforced Composites
,”
Polym. Plast. Technol. Eng.
, Vol. 
41
, No. 
5
,
2002
, pp. 
951
962
, https://doi.org/10.1081/PPT-120014397
13.
Wang
,
B.
,
Panigrahi
,
S.
,
Tabil
,
L.
, and
Crerar
,
W.
, “
Pre-Treatment of Flax Fibers for Use in Rotationally Molded Biocomposites
,”
J. Reinf. Plast Compos.
, Vol. 
26
, No. 
5
,
2016
, pp. 
447
463
, https://doi.org/10.1177/0731684406072526
14.
Ghavami
,
K.
,
Filho
,
R.D. T.
, and
Barbosa
,
N.P.
, “
Behaviour of Composite Soil Reinforced with Natural Fibres
,”
Cem. Concr. Compos.
, Vol. 
21
, No. 
1
,
1999
, pp. 
39
48
, https://doi.org/10.1016/S0958-9465(98)00033-X
15.
John
,
M.J.
and
Anandjiwala
,
R.D.
, “
Recent Developments in Chemical Modification and Characterization of Natural Fiber‐Reinforced Composites
,”
Polym. Compos.
, Vol. 
29
, No. 
2
,
2008
, pp. 
187
207
, https://doi.org/10.1002/(ISSN)1548-0569
16.
Chattopadhyay
,
D.P.
and
Patel
,
B.H.
, “
Improvement in Physical and Dyeing Properties of Natural Fibres through Pre-Treatment with Silver Nanoparticles
,”
Indian J. Fibre Text. Res.
, Vol. 
34
,
2009
, pp. 
368
373
.
17.
Bateni
,
F.
,
Ahmad
,
F.
,
Yahya
,
A.S.
, and
Azmi
,
M.
, “
Performance of Oil Palm Empty Fruit Bunch Fibres Coated with Acrylonitrile Butadiene Styrene
,”
Constr. Build. Mater.
, Vol. 
25
, No. 
4
,
2011
, pp. 
1824
1829
, https://doi.org/10.1016/j.conbuildmat.2010.11.080
18.
Castellanos
,
L.J.
,
Blanco-Tirado
,
C.
,
Hinestroza
,
J.P.
, and
Combariza
,
M.Y.
, “
In Situ Synthesis of Gold Nanoparticles Using Fique Natural Fibers as Template
,”
Cellulose
, Vol. 
19
, No. 
6
,
2012
, pp. 
1933
1943
, https://doi.org/10.1007/s10570-012-9763-8
19.
Li
,
M.
,
Chai
,
S.X.
,
Zhang
,
H.Y.
,
Du
,
H.P.
, and
Wei
,
L.
, “
Feasibility of Saline Soil Reinforced with Treated Wheat Straw and Lime
,”
Soils Found.
, Vol. 
52
, No. 
2
,
2012
, pp. 
228
238
, https://doi.org/10.1016/j.sandf.2012.02.003
20.
Khandanlou
,
R.
,
Bin Ahmad
,
M.
,
Shameli
,
K.
, and
Kalantari
,
K.
, “
Synthesis and Characterization of Rice Straw/Fe3O4 Nanocomposites by a Quick Precipitation Method
,”
Molecules
, Vol. 
18
, No. 
6
,
2013
, pp. 
6597
6607
, https://doi.org/10.3390/molecules18066597
21.
Ramli
,
R.
,
Khan
,
M.R.
,
Chowdhury
,
N.K.
,
Hossen Beg
,
M.D.
,
Halim
,
R.M.
,
Aziz
,
A.A.
,
Ibrahim
,
Z.
, and
Zainal
,
N.H.
, “
Development of Cu Nanoparticle Loaded Oil Palm Fibre Reinforced Nanocomposite
,”
Adv. Nanopart.
, Vol. 
2
, No. 
4
,
2013
, pp. 
358
365
, https://doi.org/10.4236/anp.2013.24049
22.
Chowdhury
,
M.N. K.
,
Hossen Beg
,
M.D.
,
Khan
,
M.R.
, and
Mina
,
M.F.
, “
Modification of Oil Palm Empty Fruit Bunch Fibers by Nanoparticle Impregnation and Alkali Treatment
,”
Cellulose
, Vol. 
20
, No. 
3
,
2013
, pp. 
1477
1490
, https://doi.org/10.1007/s10570-013-9921-7
23.
Bordoloi
,
S.
,
Garg
,
A.
, and
Sreedeep
,
S.
, “
A Review of Physio-Biochemical Properties of Natural Fibers and Their Application in Soil Reinforcement
,”
Adv. Civ. Eng. Mater.
, (in press).
24.
Anggraini
,
V.
,
Asadi
,
A.
,
Farzadnia
,
N.
,
Jahangirian
,
H.
, and
Huat
,
B.B. K.
, “
Effects of Coir Fibres Modified with Ca (OH) 2 and Mg (OH) 2 Nanoparticles on Mechanical Properties of Lime-Treated Marine Clay
,”
Geosynth. Int.
, Vol. 
23
, No. 
3
,
2016
. pp. 
206
218
, https://doi.org/10.1680/jgein.15.00046
25.
Anggraini
,
V.
,
Asadi
,
A.
,
Farzadnia
,
N.
,
Jahangirian
,
H.
, and
Huat
,
B.B. K.
, “
Reinforcement Benefits of Nanomodified Coir Fiber in Lime-Treated Marine Clay
,”
J. Mater. Civ. Eng.
, Vol. 
28
, No. 
6
,
2016
, 06016005, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001516
26.
Anggraini
,
V.
,
Asadi
,
A.
,
Huat
,
B.B. K.
, and
Nahazanan
,
H.
, “
Effects of Coir Fibers on Tensile and Compressive Strength of Lime Treated Soft Soil
,”
Measurement
, Vol. 
59
,
2015
, pp. 
372
381
, https://doi.org/10.1016/j.measurement.2014.09.059
27.
Anggraini
,
V.
,
Huat
,
B.B. K.
,
Asadi
,
A.
, and
Nahazanan
,
H.
, “
Effect of Coir Fibers on the Tensile and Flexural Strength of Soft Marine Clay
,”
J. Nat. Fibers
, Vol. 
12
, No. 
2
,
2014
, pp. 
185
200
, https://doi.org/10.1080/15440478.2014.912973
28.
Methacanon
,
P.
,
Weerawatsophon
,
U.
,
Sumransin
,
N.
,
Prahsarn
,
C.
, and
Bergado
,
D.T.
, “
Properties and Potential Application of the Selected Natural Fibers as Limited Life Geotextiles
,”
Carbohydr. Polym.
, Vol. 
82
, No. 
4
,
2010
, pp. 
1090
1096
, https://doi.org/10.1016/j.carbpol.2010.06.036
29.
Maneecharoen
,
J.
,
Htwe
,
W.
,
Bergado
,
D.T.
, and
Baral
,
P.
, “
Ecological Erosion Control by Limited Life Geotextiles (LLGs) as well as with Vetiver and Ruzi Grasses
,”
Indian Geotech. J.
, Vol. 
43
, No. 
4
,
2013
, pp. 
388
406
, https://doi.org/10.1007/s40098-013-0061-7
30.
Bordoloi
,
S.
,
Yamsani
,
S.K.
,
Garg
,
A.
,
Sreedeep
,
S.
, and
Borah
,
S.
, “
Study on the Efficacy of Harmful Weed Species Eicchornia Crassipes for Soil Reinforcement
,”
Ecol. Eng.
, Vol. 
85
,
2015
, pp. 
218
222
, https://doi.org/10.1016/j.ecoleng.2015.09.082
31.
Bordoloi
,
S.
,
Garg
,
A.
, and
Sreedeep
,
S.
, “
Potential of Uncultivated, Harmful and Abundant Weed as a Natural Geo-Reinforcement Material
,”
Adv. Civ. Eng. Mater.
, Vol. 
5
, No. 
1
,
2016
, pp. 
276
288
, https://doi.org/10.1520/ACEM20160012
32.
Vardhan
,
H.K.
,
Bordoloi
,
S.
,
Garg
,
A.
,
Garg
,
A.
, and
Sreedeep
,
S.
, “
Compressive Strength Analysis of Soil Reinforced with Fiber Extracted from Water Hyacinth
,”
Eng. Comput.
, Vol. 
34
, No. 
2
,
2017
, pp. 
330
342
, https://doi.org/10.1108/EC-09-2015-0267
33.
Center
,
T.D.
,
Hill
,
M.P.
,
Cordo
,
H.
, and
Julien
,
M.H.
, “
Water Hyacinth
,” Biological Control of Invasive Plants in the Eastern United States, Forest Health Technology Enterprise Team, Report No. FHTET-2002-04, US Forest Service, Morgantown, WV,
2002
, pp. 
41
64
.
34.
ASTM D4318-00 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils,
ASTM International
,
West Conshohocken, PA
.
2000
, www.astm.org
35.
ASTM D422-63(2007)
Standard Test Method for Particle-Size Analysis of Soils
,
ASTM International
,
West Conshohocken, PA
,
2007
, www.astm.org
36.
ASTM D1557-2012
Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort
,
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
37.
ASTM, D3080-06
Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions
,
ASTM International
,
West Conshohocken, PA
,
2006
, www.astm.org
38.
ASTM D2487-11
Standard Practice for Classification of Soils for Engineering Purpose (Unified Soil Classification System)
,
ASTM International
,
West Conshohocken, PA
,
2011
, www.astm.org
39.
Rowell
,
R.M.
and
Stout
,
H.P.
, “Jute and Kenaf,”
Handbook of Fiber Chemistry
, Second Ed.,
Lewin
M.
, and
Pearce
E.M.
, Eds.,
Marcel Dekker Inc.
,
New York, NY
,
2007
, pp. 
405
440
.
40.
Khalil
,
H.P. S. A.
,
Hossain
,
M.S.
,
Rosamah
,
E.
,
Azli
,
N.A.
,
Saddon
,
N.
,
Davoudpoura
,
Y.
,
Islam
,
M.N.
, and
Dungani
,
R.
, “
The Role of Soil Properties and It’s Interaction towards Quality Plant Fiber: A Review
,”
Renewable Sustainable Energy Rev.
, Vol. 
43
,
2015
, pp. 
1006
1015
, https://doi.org/10.1016/j.rser.2014.11.099
41.
Jenkins
,
S.H.
, “
The Determination of Cellulose in Straws
,”
Biochem. J.
, Vol. 
24
, No. 
5
,
1930
, pp. 
1428
1432
, https://doi.org/10.1042/bj0241428
42.
Goering
,
H.K.
and
Van Soest
,
P.J.
, “
Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications)
,
Agriculture Handbook No. 379
,
US Agricultural Research Service
,
Washington, D.C.
,
1970
, pp. 
1
11
.
43.
TAPPI T222 om-88
Acid-Insoluble Lignin in Wood and Pulp
,
TAPPI Standards
,
Peachtree Corners, GA
,
1996
, http://www.tappi.org
44.
ASTM E1755-01(2015)
Standard Method for the Determination of Ash in Biomass
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
45.
IS-2720-Part 3
Methods of Test for Soils. Determination of Specific Gravity
,
Bureau of Indian Standards Publications
,
New Delhi, India
,
1980
, http://www.bis.org.in/
46.
IS-1670
Determination of Breaking Load and Elongation at Break of Single Strand Textiles and Yarns
,
Bureau of Indian Standards Publications
,
New Delhi, India
,
1991
, http://www.bis.org.in/
47.
ASTM D2166-00
Standard Test Method for Unconfined Compressive Strength of Cohesive Soil
,
ASTM International
,
West Conshohocken, PA
,
2000
, www.astm.org
48.
ASTM D3080-12
Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions
,
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
49.
ASTM D1883
Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils
,
ASTM International
,
West Conshohocken, PA
,
2005
, www.astm.org
50.
Chae
,
J.
,
Kim
,
B.
,
Park
,
S.W.
, and
Kato
,
S.
, “
Effect of Suction on Unconfined Compressive Strength in Partly Saturated Soils
,”
KSCE J. Civ. Eng.
, Vol. 
14
, No. 
3
,
2010
, pp. 
281
290
, https://doi.org/10.1007/s12205-010-0281-7
51.
Khan
,
F.S.
,
Azam
,
S.
,
Raghunandan
,
M.E.
, and
Clark
,
R.
, “
Compressive Strength of Compacted Clay-Sand Mixes
,”
Adv. Mater. Sci. Eng.
, Vol. 
2014
, p. 6.
52.
Tang
,
C.
,
Shi
,
B.
,
Gao
,
W.
,
Chen
,
F.
, and
Cai
,
Y.
, “
Strength and Mechanical Behavior of Short Polypropylene Fiber Reinforced and Cement Stabilized Clayey Soil
,”
Geotext. Geomembr.
, Vol. 
25
, No. 
3
,
2007
, pp. 
194
202
, https://doi.org/10.1016/j.geotexmem.2006.11.002
53.
Vanapalli
,
S.K.
,
Sillers
,
W.S.
, and
Fredlund
,
M.D.
, “
The Meaning and Relevance of Residual State to Unsaturated Soils
,” presented at the
51st Canadian Geotechnical Conference
, Edmonton, Alberta, Canada, October 4–7, 1998,
Canadian Geotechnical Society
,
Richmond, British Columbia, Canada
, pp. 
1
8
.
54.
Vanapalli
,
S.K.
,
Fredlund
,
D.G.
,
Pufahl
,
D.E.
, and
Clifton
,
A.W.
, “
Model for the Prediction of Shear Strength with Respect to Soil Suction
,”
Can. Geotech. J.
, Vol. 
33
, No. 
3
,
1996
, pp. 
379
392
, https://doi.org/10.1139/t96-060
55.
Congress, Indian Roads. “
Guidelines for the design of flexible pavements
,” Indian code of practice, IRC 37 (
2001
).
56.
Marschner
,
B.
and
Kalbitz
,
K.
, “
Controls of Bioavailability and Biodegradability of Dissolved Organic Matter in Soils
,”
Geoderma
, Vol. 
113
, Nos. 
3–4
,
2003
, pp. 
211
235
, https://doi.org/10.1016/S0016-7061(02)00362-2
This content is only available via PDF.
You do not currently have access to this content.