Abstract

The prediction of asphalt concrete (AC) behavior using a continuum damage mechanics approach requires viscoelastic properties like creep compliance (CC) and relaxation modulus (RM) values. Because of practical limitations, dynamic modulus (DM) and phase angle (PA) measurements are used to construct CC and RM master curves. Numerous approximate interconversion techniques have been used for this purpose. Because of issues during testing, fabrication processes, and interconversion approximations, significant scatter can be found in CC- and RM-constructed master curves. The present study proposes and compares quantification methods to address scatter found in CC and RM master curves. The scatter found in CC and RM master curves at different reduced time values is quantified using uncertainty quantification (UQ) techniques. For this purpose, several AC specimens with identical volumetric properties were prepared and tested for DM and PA values. Furthermore, CC and RM master curves were obtained using DM and PA through approximate interconversion techniques. Finally, CC and RM values obtained (at a fixed time using particular simulation techniques) with all specimens were combined. Using these values, scatter in CC and RM values (at a specific reduced time) was evaluated using UQ techniques. The results indicate that the choice of simulation technique affects the statistical parameters associated with probability density function (PDF) to a large extent. This, in turn, significantly affects the shape of the PDF at a chosen reduced time of interest. In other words, uncertainty found in CC and RM values are dependent on the choice of interconversion technique and time of interest.

References

1.
Lakes
,
R.
and
Quackenbush
,
J.
, “
Viscoelastic Behavior in Indium Tin Alloys over a Wide Range of Frequency and Time
,”
Philos. Mag. Lett.
, Vol. 
74
,
1996
, pp. 
227
232
, https://doi.org/10.1080/095008396180155
2.
Darter
,
I. M.
and
Hudson
,
W. R.
, “
Probabilistic Design Concepts Applied to Flexible Pavement System Design
,”
Center for Highway Research Report 123-18
, Texas Highway Department, Austin, TX,
1973
.
3.
Paola
,
D. V.
,
2015
, “
Reliability in Pavement Design
,” Ph.D. thesis,
University of Nottingham
, Nottingham, England.
4.
Lacroix
,
A.
,
Kim
,
Y. R.
, and
Arellano
,
C.
, “
Comparison of Dynamic Moduli for Asphalt Mixtures Determined from Different Geometries and Compactions
,”
J. Test. Eval.
, Vol. 
40
, No. 
6
,
2012
, pp. 
1006
1014
, https://doi.org/10.1520/JTE104610
5.
Deshpande
,
V. P.
,
Damnjanovic
,
I. D.
, and
Gardoni
,
P.
, “
Reliability-Based Optimization Models for Scheduling Pavement Rehabilitation
,”
Comput.-Aided Civ. Infrastruct. Eng.
, Vol. 
25
, No. 
4
,
2009
, pp. 
227
237
, https://doi.org/10.1111/j.1467-8667.2009.00636.x
6.
Rajbongshi
,
P.
and
Das
,
A.
, “
Optimal Asphalt Pavement Design Considering Cost and Reliability
,”
J. Transp. Eng.
, Vol. 
134
, No. 
6
,
2008
, pp. 
255
261
, https://doi.org/10.1061/(ASCE)0733-947X(2008)134:6(255)
7.
Thyagarajan
,
S.
,
Muhunthan
,
B.
,
Sivaneswaran
,
N.
, and
Petros
,
K.
, “
Efficient Simulation Techniques for Reliability Analysis of Flexible Pavements Using the Mechanistic-Empirical Pavement Design Guide
,”
J. Transp. Eng.
, Vol. 
137
, No. 
11
,
2011
, pp. 
796
804
, https://doi.org/10.1061/(ASCE)TE.1943-5436.0000272
8.
Retherford
,
J.
and
McDonald
,
M.
, “
Reliability Methods Applicable to Mechanistic-Empirical Pavement Design Method
,”
J. Transp. Res. Rec.
, Vol. 
2154
,
2010
, pp. 
130
137
, https://doi.org/10.3141/2154-13
9.
Biligiri
,
K. P.
,
2008
, “
Asphalt Mixtures’ Properties Indicative of Tire/Pavement Noise
,” Ph.D. dissertation,
Arizona State University
, Tempe, AZ.
10.
Biligiri
,
K. P.
,
Kaloush
,
K. E.
, and
Uzan
,
J.
, “
Evaluation of Asphalt Mixtures Viscoelastic Properties Using Phase Angle Relationships
,”
Int. J. Pavement Eng.
, Vol. 
11
, No. 
2
,
2010
, pp. 
143
152
, https://doi.org/10.1080/10298430903033354
11.
Hamed
,
F.
,
2010
, “
Evaluation of Fatigue Resistance for Modified Asphalt Concrete Mixtures Based on Dissipated Energy Concept
,” Ph.D. dissertation,
Technische Universität Darmstadt
, Darmstadt, Germany.
12.
Lee
,
H.
,
Kim
,
S.
,
Choubane
,
B.
, and
Upshaw
,
P.
, “
Construction of Dynamic Modulus Master Curves Using Resilient Modulus and Creep Test Data
,”
Transp. Res. Rec.
, Vol. 
2296
,
2012
, p. 114.
13.
Zhao
,
Y.
,
2002
, “
Permanent Deformation Characterization of Asphalt Concrete Using a Viscoelastoplastic Model
,” Ph.D. dissertation,
North Carolina State University
, Raleigh, NC.
14.
Chailleux
,
E.
,
Ramond
,
G.
,
Such
,
C.
, and
de la Roche
,
C. L.
, “
A Mathematical-Based Master-Curve Construction Method Applied to Complex Modulus of Bituminous Materials
,”
Road Mater. Pavement Des.
, Vol. 
7
, No. Sup1,
2006
, pp. 
75
92
, https://doi.org/10.1080/14680629.2006.9690059
15.
Rais
,
M. N.
,
Wahab
,
Y.
,
Endut
,
I. R.
, and
Latif
,
A.
, “
Dynamic Modulus Master Curve Construction Using the Modified MEPDG Model
,” presented at the
First International Conference on Artificial Intelligence, Modelling & Simulation
, Kota Kinabalu, Malaysia, December 3–5,
2013
,
IEEE
,
New York, NY
, https://doi.org/10.1109/AIMS.2013.40
16.
Witczak
,
M. W.
, “
Specification Criteria for Simple Performance Tests for Rutting: Volume I: Complex Modulus (E*) and Volume II: Flow Number and Flow Time
,” Transportation Research Board of the National Academies, Washington, DC,
2007
.
17.
Dealy
,
J.
and
Plazeck
,
D.
, “
Time-Temperature Superposition-A Users Guide
,”
Rheol. Bull.
, Vol. 
78
, No. 
2
,
2009
, pp. 
16
31
.
18.
Mateos
,
A.
and
Soares
,
J. B.
, “
Validation of a Dynamic Modulus Predictive Equation on the Basis of Spanish Asphalt Concrete Mixtures
,”
Mater. Construct.
, Vol. 
65
, No. 
317
,
2015
, p. e047, https://doi.org/10.3989/mc.2015.01114
19.
Zhao
,
Y.
and
Kim
,
R.
, “
Time Temperature Superposition for Asphalt Mixtures with Growing Damage and Permanent Deformation in Compression
,”
Transp. Res. Rec.
, Vol. 
1832
,
2003
, pp. 
161
172
, https://doi.org/10.3141/1832-20
20.
Park
,
S. W.
and
Scaphery
,
R. A.
, “
Methods of Interconversion between Linear Viscoelastic Material Functions. Part I—A Numerical Method Based on Prony Series
,”
Int. J. Solids Struct.
, Vol. 
36
, No. 
11
,
1999
, pp. 
1653
1675
, https://doi.org/10.1016/S0020-7683(98)00055-9
21.
Ferry
,
J. D.
,
Viscoelastic Properties of Polymers
, 3rd ed.,
John Wiley & Sons
,
Hoboken, NJ
,
1980
.
22.
Park
,
S. W.
and
Kim
,
Y. R.
, “
Interconversion between Relaxation Modulus and Creep Compliance for Viscoelastic Solids
,”
J. Mater. Civ. Eng.
, Vol. 
11
, No. 
1
,
1999
, pp. 
76
82
, https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(76)
23.
Leaderman
,
H.
, “Viscoelasticity Phenomena in Amorphous High Polymeric Systems,”
Rheology: Theory and Applications
, Vol. 
2
,
Eirich
F. R.
, Ed.,
Academic Press Inc.
,
New York, NY
,
1958
, pp. 
1
61
.
24.
Denby
,
E. F.
, “
A Note on the Interconversion of Creep, Relaxation and Recovery
,”
Rheol. Acta
, Vol. 
14
, No. 
7
,
1975
, pp. 
591
593
.
25.
Tashman
,
L.
and
Elangovan
,
M. A.
, “
Complex Modulus Test—Laboratory Investigation and Future Implementation in the State of Washington
,” Research Report WA-RD 704.1, Washington State Department of Transportation, Olympia, WA,
2008
.
26.
Kassem
,
A. H.
,
Najjar
,
S. S.
, and
Chehab
,
R. G.
, “
Probabilistic Modeling of the Inherent Variability in the Dynamic Modulus Master Curve of Asphalt Concrete
,”
Transp. Res. Rec.
, Vol. 
2576
,
2016
, pp. 
60
71
, https://doi.org/10.3141/2576-07
27.
Cullen
,
A. C.
and
Frey
,
H. C.
,
Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs
,
Springer US
,
New York, NY
,
1999
.
28.
Chou
,
Y. T.
, “
Reliability Design Procedures for Flexible Pavements
,”
J. Transp. Eng.
, Vol. 
116
, No. 
5
,
1990
, pp. 
602
614
, https://doi.org/10.1061/(ASCE)0733-947X(1990)116:5(602)
29.
Herbold
,
K.
, “
Case Studies Using Monte Carlo Simulation for Pavement Cost Analysis
,” Web source: https://web.archive.org/web/20171011090753/http://www.palisade.com/cases/public_roads_mag1.asp (accessed 11 Oct. 2017)
30.
Sun
,
L.
and
Hudson
,
W. R.
, “
Probabilistic Approaches for Pavement Fatigue Cracking Prediction Based on Cumulative Damage Using Miner’s Law
,”
J. Eng. Mech.
, Vol. 
131
, No. 
5
,
2005
, pp. 
546
549
, https://doi.org/10.1061/(ASCE)0733-9399(2005)131:5(546)
31.
Maji
,
A.
and
Das
,
A.
, “
Reliability Considerations of Bituminous Pavement Design by Mechanistic-Empirical Approach
,”
Int. J. Pavement Eng.
, Vol. 
9
, No. 
1
,
2008
, pp. 
19
31
, https://doi.org/10.1080/10298430600997240
32.
Kim
,
S.
,
Ceylan
,
H.
, and
Gopalakrishnan
,
K.
, “
Effect of M-E Design Guide Inputs on Flexible Pavement Performance Predictions
,”
Road Mater. Pavement Des.
, Vol. 
8
, No. 
3
,
2007
, pp. 
375
397
, https://doi.org/10.1080/14680629.2007.9690080
33.
Kim
,
H. B.
and
Buch
,
S. H.
, “
Reliability-Based Design Model Applied to Mechanistic Empirical Pavement Design
,”
KSCE J. Civ. Eng.
, Vol. 
6
, No. 
3
,
2002
, pp. 
263
272
, https://doi.org/10.1007/BF02829149
34.
Li
,
Q.
,
Xiao
,
D. X.
,
Wang
,
K. C. P.
,
Hall
,
K. D.
, and
Qui
,
Y.
, “
Mechanistic-Empirical Pavement Design Guide (MEPDG): A Bird’s-Eye View
,”
J. Mod. Transp.
, Vol. 
19
, No. 
2
,
2011
, pp. 
114
133
, https://doi.org/10.1007/BF03325749
35.
Swamy
,
A. K.
and
Daniel
,
J. S.
, “
Effect of Mode of Loading on Viscoelastic and Damage Properties of Asphalt Concrete
,”
Transp. Res. Rec.
, Vol. 
2296
, No. 
1
,
2012
, pp. 
144
152
, https://doi.org/10.3141/2296-15
36.
AASHTO TP 69-04
Standard Method of Test for Bulk Specific Gravity and Density of Compacted Asphalt Mixtures Using Automatic Vacuum Sealing Method
,
American Association of State and Highway Transportation Officials
,
Washington, DC
, www.transportation.org
This content is only available via PDF.
You do not currently have access to this content.