Abstract

Unpaved roads are subject to rapid deterioration and large deformations under mechanical and environmental stresses that can render them impassable. Prior work has shown that plastic soils can be mixed with a polymeric chemical admixture to create a hydrophobic material and potentially minimize these issues. The purpose of this work is to assess the durability of a low plasticity clay soil treated with a chemical admixture by evaluating changes in physical and mechanical behavior when subjected to alternating cycles of wetting and drying. Volumetric change, water content change, and mass loss were measured at the completion of each one of up to twelve wetting and drying cycles. Unconfined compression tests were performed after select cycles to assess changes in mechanical properties. Tests were also performed on specimens stabilized with Type I/II portland cement for comparison. It was found that the specimens with chemical admixture treatment survived a full twelve cycles of wetting and drying. The volume changes of the specimens were small (±2 %) and there was no apparent reduction in strength. The chemically stabilized soil retained its physical and mechanical properties in a manner comparable to cement stabilization of the same soil. These results suggest that the CAT produces a sufficiently stable material when subjected to alternating wetting and drying conditions and has potential applications in improving long-term performance of unpaved roads.

References

1.
“The World Factbook 2013–2014,” Central Intelligence Agency, Washington, DC, http://web.archive.org/web/20180301201930/https://www.cia.gov/library/publications/resources/the-world-factbook/fields/2085.html, (accessed March 1, 2018).
2.
Bryceson
,
D.F.
,
Bradbury
,
A.
, and
Bradbury
,
T.
, “
Roads to Poverty Reduction? Exploring Rural Roads’ Impact on Mobility in Africa and Asia
,”
Dev. Policy Rev.
, Vol. 
26
, No. 
4
,
2008
, pp. 
459
482
, https://doi.org/10.1111/j.1467-7679.2008.00418.x
3.
Liu
,
W.
,
Yang
,
Q.
,
Tang
,
X.
, and
Yang
,
G.
, “
Effect of Drying and Wetting on the Shear Strength of a Low-Plasticity Clay with Different Initial Dry Densities
,”
J. Test. Eval.
, Vol. 
44
, No. 
4
,
2016
, pp. 
1802
1811
, https://doi.org/10.1520/JTE20140096
4.
Unsurfaced Road Maintenance Management: Engineer Technical Manual No. 5-626, Department of the Army, Washington, DC, 1995, 50p.
5.
Jaritngam
,
S.
,
Somchainuek
,
O.
, and
Taneerananon
,
P.
, “
An Investigation of Lateritic Soil Cement for Sustainable Pavements
,”
Indian J. Sci. Technol.
, Vol. 
5
, No. 
11
,
2012
, pp. 
3603
3606
.
6.
Al-Aghbari
,
M.Y.
,
Mohamedzein
,
Y.E. A.
, and
Taha
,
R.
, “
Stabilisation of Desert Sands Using Cement and Cement Dust
,”
Proc. Inst. Civ. Eng.
, Vol. 
162
, No. 
3
,
2009
, pp. 
145
151
.
7.
Richardson
,
D.N.
, “
AASHTO Layer Coefficients for Cement-Stabilized Soil Bases
,”
J. Mater. Civ. Eng.
, Vol. 
8
, No. 
2
,
1996
, pp. 
83
87
, https://doi.org/10.1061/(ASCE)0899-1561(1996)8:2(83)
8.
Prusinski
,
J.R.
and
Bhattacharja
,
S.
, “
Effectiveness of Portland Cement and Lime in Stabilizing Clay Soils
,”
Transp. Res. Rec.
, Vol. 
1652
,
1999
, pp. 
215
227
, https://doi.org/10.3141/1652-28
9.
Khalife
,
R.
,
Solanki
,
P.
, and
Zaman
,
M.M.
, “
Evaluation of Durability of Stabilized Clay Specimens Using Different Laboratory Procedures
,”
J. Test. Eval.
, Vol. 
40
, No. 
3
,
2012
, pp. 
363
375
, https://doi.org/10.1520/JTE104194
10.
Solanki
,
P.
,
Zaman
,
M.M.
, and
Khalife
,
R.
,
Tube Suction Test for Evaluating Durability of Cementitiously Stabilized Soils, Final Report OTCREOS7.1-52-F
,
Oklahoma Transportation Center
,
Midwest City, OK
,
2011
, 175p.
11.
Parsons
,
R.
and
Milburn
,
J.
, “
Engineering Behavior of Stabilized Soils
,”
Transp. Res. Rec.
, Vol. 
1837
,
2003
, pp. 
20
29
, https://doi.org/10.3141/1837-03
12.
Aldaood
,
A.
,
Bouasker
,
M.
, and
Al-Mukhtar
,
M.
, “
Impact of Wetting-Drying Cycles on the Microstructure and Mechanical Properties of Lime-Stabilized Gypseous Soils
,”
Eng. Geol.
, Vol. 
174
,
2014
, pp. 
11
21
, https://doi.org/10.1016/j.enggeo.2014.03.002
13.
Rao
,
S.M.
,
Reddy
,
B.V. V.
, and
Muttharam
,
M.
, “
The Impact of Cyclic Wetting and Drying on the Swelling Behaviour of Stabilized Expansive Soils
,”
Eng. Geol.
, Vol. 
60
, Nos. 
1–4
,
2001
, pp. 
223
233
, https://doi.org/10.1016/S0013-7952(00)00103-4
14.
Rasul
,
J.M.
,
Burrow
,
M.P. N.
, and
Ghataora
,
G.S.
, “
Consideration of the Deterioration of Stabilised Subgrade Soils in Analytical Road Pavement Design
,”
Transp. Geotech.
, Vol. 
9
,
2016
, pp. 
96
109
, https://doi.org/10.1016/j.trgeo.2016.08.002
15.
Harichane
,
K.
,
Ghrici
,
M.
,
Khebizi
,
W.
, and
Missoum
,
H.
, “
Effect of the Combination of Lime and Natural Pozzolana on the Durability of Clayey Soils
,”
Electron. J. Geotech. Eng.
, Vol. 
15
,
2010
, pp. 
1194
1210
.
16.
Kamei
,
T.
,
Ahmed
,
A.
, and
Ugai
,
K.
, “
Durability of Soft Clay Soil Stabilized with Recycled Bassanite and Furnace Cement Mixtures
,”
Soils Found.
, Vol. 
53
, No. 
1
,
2013
, pp. 
155
165
, https://doi.org/10.1016/j.sandf.2012.12.011
17.
Kampala
,
A.
,
Horpibulsuk
,
S.
,
Prongmanee
,
N.
, and
Chinkulkijniwat
,
A.
, “
Influence of Wet-Dry Cycles on Compressive Strength of Calcium Carbide Residue–Fly Ash Stabilized Clay
,”
J. Mater. Civ. Eng.
, Vol. 
26
, No. 
4
,
2014
, pp. 
633
643
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000853
18.
Bo
,
Y.-L.
,
Du
,
Y.-J.
,
Wei
,
M.-L.
, and
Liu
,
C.-Y.
, “
Effect of Wetting-Drying Cycles on Strength Properties of Ground Granulated Blast-Furnace Slag and Magnesium Oxide-Stabilized Soft Clay
,”
Chin. J. Geotech. Eng.
, Vol. 
35
, No. 
zk1
,
2013
, pp. 
134
139
.
19.
Hanson
,
G.J.
and
Cook
,
K.R.
, “
Apparatus, Test Procedures, and Analytical Methods to Measure Soil Erodibility In Situ
,”
Appl. Eng. Agric.
, Vol. 
20
, No. 
4
,
2004
, pp. 
455
462
, https://doi.org/10.13031/2013.16492
20.
Wan
,
C.F.
and
Fell
,
R.
, “
Investigation of Rate of Erosion of Soils in Embankment Dams
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
130
, No. 
4
,
2004
, pp. 
373
380
, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(373)
21.
Indraratna
,
B.
,
Athukorala
,
R.
, and
Vinod
,
J.
, “
Estimating the Rate of Erosion of a Silty Sand Treated with Lignosulfonate
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
139
, No. 
5
,
2013
, pp. 
701
714
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000766
22.
Vinod
,
J.S.
,
Indraratna
,
B.
, and
Mahamud
,
M.A. A.
, “
Internal Erosional Behaviour of Lignosulfonate Treated Dispersive Clay
,”
Ground Improvement Technologies and Case Histories
,
Leung
C.
,
Chu
J.
, and
Shen
R.
, Eds.,
Research Publishing Services
,
Singapore
,
2010
, pp. 
549
554
.
23.
ASTM D559/D559M-15
Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
24.
Rao
,
S.M.
,
Sridharan
,
A.
, and
Ramanath
,
K.P.
, “
Collapse Behavior of an Artificially Cemented Clay
,”
Geotech. Test. J.
, Vol. 
18
, No. 
3
,
1995
, pp. 
334
341
, https://doi.org/10.1520/GTJ11002J
25.
Zhang
,
Z.
and
Tao
,
M.
, “
Durability of Cement Stabilized Low Plastic Soils
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
134
, No. 
2
,
2008
, pp. 
203
213
, https://doi.org/10.1061/(ASCE)1090-0241(2008)134:2(203)
26.
Wang
,
B.-t.
,
Zhang
,
C.-h.
,
Qiu
,
X.-l.
,
Ji
,
E.-y.
, and
Zhang
,
W.-h.
, “
Research on Wetting-Drying Cycles’ Effect on the Physical and Mechanical Properties of Expansive Soil Improved by OTAC-KCl
,”
Adv. Mater. Sci. Eng.
, Vol. 
2015
,
2015
, 304276.
27.
Starcher
,
R.D.
,
Gassman
,
S.L.
, and
Pierce
,
C.E.
, “
The Durability of Chemically Treated Soils Subjected to Cycles of Wetting and Drying
,” presented at
Geo-Chicago 2016: Sustainable Geoenvironmental Systems
, Chicago, IL, Aug. 14–18, 2016,
ASCE
,
Reston, VA
, pp. 
728
737
.
28.
ASTM D1883-16
Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
29.
ASTM D2166/D2166M-16
Standard Test Method for Unconfined Compressive Strength of Cohesive Soil
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
30.
ASTM C127-15
Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
31.
ASTM D2487-11
Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
,
ASTM International
,
West Conshohocken, PA
,
2011
, www.astm.org
32.
AASHTO M145
Standard Specification for Classification of Soils and Soil–Aggregate Mixtures for Highway Construction Purposes
,
AASHTO
,
Washington, DC
,
1991
, www.global.ihs.com
33.
ASTM D422-63(2007)e2
Standard Test Method for Particle-Size Analysis of Soils
(Withdrawn 2016),
ASTM International
,
West Conshohocken, PA
,
2007
, www.astm.org
34.
ASTM D4318-10e1
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org
35.
ASTM D854-14
Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
36.
ASTM D698-12e2
Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3))
,
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
This content is only available via PDF.
You do not currently have access to this content.