Abstract

Characterization of fresh concrete is critical for assuring the quality of the United States’ constructed infrastructure. While fresh concrete arriving at a job site in a ready-mixed concrete truck is typically characterized by measuring temperature, slump, unit weight, and air content, here the measurement of the electrical resistance of a freshly cast cylinder of concrete is investigated as a means of assessing mixture proportions, specifically cement and water contents. Both cement and water contents influence the measured electrical resistance of a sample of fresh concrete: the cement by producing ions (chiefly potassium, sodium, and hydroxide) that are the main source of electrical conduction and the water by providing the main conductive pathways through which the current travels. Relating the measured electrical resistance to attributes of the mixture proportions, such as water-cement ratio by mass (w/c), is explored for a set of eleven different concrete mixtures prepared in the laboratory. In these mixtures, w/c, paste content, air content, fly ash content, high range water reducer dosage, and cement alkali content are all varied. Additionally, concrete electrical resistance data are supplemented by measuring the resistivity of its component pore solution obtained from five laboratory-prepared cement pastes with the same proportions as their corresponding concrete mixtures. Only measuring the concrete electrical resistance can provide a prediction of the mixture’s paste content or the product w*c; conversely, when pore solution resistivity is also available, w/c and water content of the concrete mixture can be reasonably assessed.

References

1.
Naik
,
T. R.
and
Ramme
,
B. W.
, “
Determination of the Water Content of Concrete by the Microwave Method
,”
Cem. Concr. Res.
, Vol. 
17
, No. 
6
,
1987
, pp. 
927
938
, https://doi.org/10.1016/0008-8846(87)90081-0
2.
Nantung
,
T. E.
, “Determination of Water-to-Cement Ratio in Fresh Concrete Using Microwave Oven,” SHRP Product Evaluation, Indiana Department of Transportation, Indianapolis, IN,
1998
, 21p.
3.
Bognacki
,
C. J.
,
Pirozzi
,
M.
,
Marsano
,
J.
, and
Scriffiano
,
A.
, “
Increasing the Service Lives of Airport Pavements
,”
Concr. Int.
, Vol. 
34
, No. 
1
,
2012
, pp. 
27
33
.
4.
Mancio
,
M.
,
Moore
,
J. R.
,
Brooks
,
Z.
,
Monteiro
,
P. J. M.
, and
Glaser
,
S. D.
, “
Instantaneous In-Situ Determination of Water-Cement Ratio of Fresh Concrete
,”
ACI Mater. J.
, Vol. 
107
, No. 
6
,
2010
, pp. 
587
593
.
5.
Li
,
Z.
,
Xiao
,
L.
, and
Wei
,
X.
, “
Determination of Concrete Setting Time using Electrical Resistivity Measurement
,”
J. Mater. Civ. Eng.
, Vol. 
19
, No. 
5
,
2007
, pp. 
423
427
, https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(423)
6.
Bentz
,
D. P.
,
Snyder
,
K. A.
, and
Ahmed
,
A.
, “
Anticipating the Setting Time of High-Volume Fly Ash Concretes Using Electrical Measurements: Feasibility Studies Using Pastes
,”
J. Mater. Civ. Eng.
, Vol. 
27
, No. 
3
,
2015
, pp. 
1
6
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001065
7.
Christensen
,
B.
,
Mason
,
T. O.
,
Jennings
,
H. M.
,
Bentz
,
D. P.
, and
Garboczi
,
E. J.
, “
Experimental and Computer Simulation Results for the Electrical Conductivity of Portland Cement Paste
,” presented at
Advanced Cementitious Systems: Mechanisms and Properties
, Boston, MA, Dec. 2–4,
1991
,
Materials Research Society
,
Warrendale, PA
, pp. 
259
264
.
8.
Wei
,
X.
and
Xiao
,
L.
, “
Effect of Temperature on the Electrical Resistivity of Portland Cement Pastes
,”
Adv. Cem. Res.
, Vol. 
24
, No. 
2
,
2012
, pp. 
69
76
, https://doi.org/10.1680/adcr.10.00045
9.
Garboczi
,
E. J.
and
Bentz
,
D. P.
, “
Computer Simulation of the Diffusivity of Cement-Based Materials
,”
J. Mater. Sci.
, Vol. 
27
, No. 
8
,
1992
, pp. 
2083
2092
, https://doi.org/10.1007/BF01117921
10.
ASTM C150/C150M-17
Standard Specification for Portland Cement
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
11.
ASTM C618-15
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
12.
ASTM C33/C33M-16e1
Standard Specification for Concrete Aggregates
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
13.
ASTM C494/C494M-17
Standard Specification for Chemical Admixtures for Concrete
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
14.
ASTM C260/C260M-10a(2016)
Standard Specification for Air-Entraining Admixtures for Concrete
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
15.
ASTM C143/C143M-15a
Standard Test Method for Slump of Hydraulic-Cement Concrete
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
16.
ASTM C138/C138M-17a
Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
17.
ASTM C231/C231M-17a
Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
18.
ASTM C1064/C1064M-12
Standard Test Method for Temperature of Freshly Mixed Hydraulic-Cement Concrete
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
19.
ASTM C39/C39M-17b
Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
20.
ASTM C192/C192M-16a
Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
21.
CRC Handbook of Chemistry and Physics
, 70th ed.,
Weast
R. C.
, Ed.,
CRC Press
,
Boca Raton, FL
,
1989
, pp. 
5
71
.
22.
ASTM C1738/C1738M-14
Standard Practice for High-Shear Mixing of Hydraulic Cement Pastes
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
23.
Handbook of Instrumental Techniques for Analytical Chemistry
,
Settle
F. A.
, Ed.,
Prentice Hall
,
Upper Saddle River, NJ
,
1997
, pp. 
760
761
.
24.
Natrella
,
M. G.
,
Experimental Statistics
, NBS Handbook 91,
National Institute of Standards and Technology (formerly NBS)
,
Washington DC
, 1963, Reprinted
1966
.
25.
Snyder
,
K. A.
,
Feng
,
X.
,
Keen
,
B. D.
, and
Mason
,
T. O.
, “
Estimating the Electrical Conductivity of Cement Paste Pore Solutions from OH, K+ and Na+ Concentrations
,”
Cem. Concr. Res.
, Vol. 
33
, No. 
6
,
2003
, pp. 
793
798
, https://doi.org/10.1016/S0008-8846(02)01068-2
26.
Bentz
,
D. P.
, “
A Virtual Rapid Chloride Permeability Test
,”
Cem. Concr. Compos.
, Vol. 
29
, No. 
10
,
2007
, pp. 
723
731
, https://doi.org/10.1016/j.cemconcomp.2007.06.006
27.
Obla
,
K.
,
Hong
,
R. J.
,
Lobo
,
C. L.
, and
Sherman
,
S.
, “Evaluation of ASTM Standard Practice on Measuring the Electrical Resistance of Fresh Concrete,” National Ready Mixed Concrete Association Research Report, September
2017
, pp. 1–12, https://web.archive.org/web/20170925175233/https://www.nrmca.org/research_engineering/Documents/FreshResistanceWCMReportSep17.pdf (accessed 22 Jan. 2018).
28.
ASTM C94/C94M-17a
Standard Specification for Ready-Mixed Concrete
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
This content is only available via PDF.
You do not currently have access to this content.