Abstract

With the highly developed economy, many high-rise buildings are constructed in cities. In Penang, Malaysia, hundreds of high-rise buildings are erected. Because of their beauty and graceful style, two-layer glass curtain walls are super popular in these kinds of buildings. The purpose of this article is to examine the spacing between the two layers of glass curtain walls and introduce the latest research achievements for energy conservation in Penang. Based on Ecotect (Autodesk, San Rafael, CA) simulations, a 300-mm space between the two layers of the glass curtain wall can achieve maximum energy conservation. The major themes of this research include advancements in architecture structure measurements and analytical and simulation applications that provide insight into energy savings for high-rise buildings in Penang. In addition, it is hoped that these research findings can be applied to the future construction programs in Penang and in other parts of the world with similar infrastructure and climate. There has been a growing body of research and application in this field, but significant challenges and opportunities still lie ahead.

References

1.
Chai
,
L. T.
, “
Culture Heritage Tourism Engineering at Penang: Complete The Puzzle Of ‘The Pearl Of Orient’
,”
Syst. Eng. Procedia
, Vol. 
1
,
2011
, pp. 
358
364
, https://doi.org/10.1016/j.sepro.2011.08.054
2.
Gratia
,
E.
and
De Herde
,
A.
, “
The Most Efficient Position of Shading Devices in a Double-Skin Façade
,”
Energy Build.
, Vol. 
39
, No. 
3
,
2007
, pp. 
364
373
, https://doi.org/10.1016/j.enbuild.2006.09.001
3.
Derbez
,
M.
,
Berthineau
,
B.
,
Cochet
,
V.
,
Pignon
,
C.
,
Ribéron
,
J.
,
Wyart
,
G.
,
Mandin
,
C.
, and
Kirchner
,
S.
, “
A 3-Year Follow-Up of Indoor Air Quality and Comfort in Two Energy-Efficient Houses
,”
Build. Environ.
, Vol. 
82
,
2014
, pp. 
288
299
, https://doi.org/10.1016/j.buildenv.2014.08.028
4.
Bonte
,
M.
,
Thellier
,
F.
, and
Lartigue
,
B.
, “
Impact of Occupant’s Actions on Energy Building Performance and Thermal Sensation
,”
Energy Build.
, Vol. 
76
,
2014
, pp. 
219
227
, https://doi.org/10.1016/j.enbuild.2014.02.068
5.
Firląg
,
S.
and
Zawada
,
B.
, “
Impacts of Airflows, Internal Heat and Moisture Gains on Accuracy of Modeling Energy Consumption and Indoor Parameters in Passive Building
,”
Energy Build.
, Vol. 
64
,
2013
, pp. 
372
383
, https://doi.org/10.1016/j.enbuild.2013.04.024
6.
Fabi
,
V.
,
Andersen
,
R. V.
, and
Corgnati
,
S. P.
, “
Influence of Occupant’s Heating Set-Point Preferences on Indoor Environmental Quality and Heating Demand in Residential Buildings
,”
HVAC&R Res.
, Vol. 
19
, No. 
5
,
2013
, pp. 
635
645
.
7.
Hamada
,
Y.
and
Fukai
,
J.
, “
Latent Heat Thermal Energy Storage Tanks for Space Heating of Buildings: Comparison between Calculations and Experiments
,”
Energy Convers. Manage.
, Vol. 
46
, No. 
20
,
2005
, pp. 
3221
3235
, https://doi.org/10.1016/j.enconman.2005.03.009
8.
Adorkor
,
B. K.
and
Rory
,
V. J.
, “
Physical Environmental and Contextual Drivers of Occupants’ Manual Space Heating Override Behavior in UK Residential Buildings
,”
Energy Build.
, Vol. 
183
, No. 
3
,
2019
, pp. 
129
138
, https://doi.org/10.1016/j.enbuild.2018.10.043
9.
Amber
,
K. P.
,
Aslam
,
M. W.
, and
Hussain
,
S. K.
, “
Electricity Consumption Forecasting Models for Administration Buildings of the UK Higher Education Sector
,”
Energy Build.
, Vol. 
90
,
2015
, pp. 
127
136
, https://doi.org/10.1016/j.enbuild.2015.01.008
10.
Gratia
,
E.
and
De Herde
,
A.
, “
Natural Cooling Strategies Efficiency in an Office Building with a Double-Skin Façade
,”
Energy Build.
, Vol. 
36
, No. 
11
,
2004
, pp. 
1139
1152
, https://doi.org/10.1016/j.enbuild.2004.05.004
11.
Llovera
,
J.
,
Potau
,
X.
,
Medrano
,
M.
, and
Cabeza
,
L. F.
, “
Design and Performance of Energy-Efficient Solar Residential House in Andorra
,”
Appl. Energy
, Vol. 
88
, No. 
4
,
2011
, pp. 
1343
1353
, https://doi.org/10.1016/j.apenergy.2010.10.015
12.
Wang
,
Y.
,
Liu
,
Y.
,
Wang
,
D.
, and
Liu
,
J.
, “
Effect of the Night Ventilation Rate on the Indoor Environment and Air-Conditioning Load while Considering Wall Inner Surface Moisture Transfer
,”
Energy Build.
, Vol. 
80
,
2014
, pp. 
366
374
, https://doi.org/10.1016/j.enbuild.2014.05.051
13.
Jiménez
,
M. J.
,
Porcar
,
B.
, and
Heras
,
M. R.
, “
Application of Different Dynamic Analysis Approaches to the Estimation of the Building Component U Value
,”
Build. Environ.
, Vol. 
44
, No. 
2
,
2009
, pp. 
361
367
, https://doi.org/10.1016/j.buildenv.2008.03.010
14.
Pan
,
Y.
,
Huang
,
Z.
, and
Wu
,
G.
, “
Calibrated Building Energy Simulation and Its Application in a High-Rise Commercial Building in Shanghai
,”
Energy Build.
, Vol. 
39
, No. 
6
,
2007
, pp. 
651
657
, https://doi.org/10.1016/j.enbuild.2006.09.013
15.
Li
,
L.
,
Yan
,
Q.
,
Jin
,
L.
, and
Yue
,
L.
, “
Preparation Method of Shape-Stabilized PCM Wall and Experimental Research of Thermal Performance
,”
Taiyangneng Xuebao/Acta Energiae Solaris Sin.
, Vol. 
33
, No. 
12
,
2012
, pp. 
2135
2139
.
16.
Crawley
,
D. B.
,
Hand
,
J. W.
,
Kummert
,
M.
, and
Griffith
,
B. T.
, “
Contrasting the Capabilities of Building Energy Performance Simulation Programs
,”
Build. Environ.
, Vol. 
43
, No. 
4
,
2008
, pp. 
661
673
, https://doi.org/10.1016/j.buildenv.2006.10.027
17.
Sepideh
,
S. K.
and
Azadeh
,
M.
, “
Developing a Design Framework to Facilitate Adaptive Behaviours
,”
Energy Build.
, Vol. 
179
, No. 
5
,
2018
, pp. 
360
373
, https://doi.org/10.1016/j.enbuild.2018.09.011
18.
Iqbal
,
I.
and
Al-Homoud
,
M. S.
, “
Parametric Analysis of Alternative Energy Conservation Measures in an Office Building in Hot and Humid Climate
,”
Build. Environ.
, Vol. 
42
, No. 
5
,
2007
, pp. 
2166
2177
, https://doi.org/10.1016/j.buildenv.2006.04.011
19.
Mustafaraj
,
G.
,
Marini
,
D.
,
Costa
,
A.
, and
Keane
,
M.
, “
Model Calibration for Building Energy Efficiency Simulation
,”
Appl. Energy
, Vol. 
130
,
2014
, pp. 
72
85
, https://doi.org/10.1016/j.apenergy.2014.05.019
20.
Künzel
,
H. M.
,
Simultaneous Heat and Moisture Transport in Building Components: One- and Two-Dimensional Calculation Using Simple Parameters
,
IRB Verlag
,
Stuttgart, Germany
,
1995
, 102p.
21.
Raftery
,
P.
,
Keane
,
M.
, and
O’Donnell
,
J.
, “
Calibrating Whole Building Energy Models: An Evidence-Based Methodology
,”
Energy Build.
, Vol. 
43
, No. 
9
,
2011
, pp. 
2356
2364
, https://doi.org/10.1016/j.enbuild.2011.05.020
22.
Tobias
,
H.
and
Aria
,
A.
, “
Cross-Flowing Displacement Ventilation System for Conveyor Belts in the Food Industry
,”
Energy Build.
, Vol. 
179
, No. 
6
,
2018
, pp. 
213
222
, https://doi.org/10.1016/j.enbuild.2018.09.021
23.
Howden-Chapman
,
P.
,
Crane
,
J.
,
Chapman
,
R.
, and
Fougere
,
G.
, “
Improving Health and Energy Efficiency through Community-Based Housing Interventions
,”
Int. J. Public Health
, Vol. 
56
, No. 
6
,
2011
, pp. 
583
588
, https://doi.org/10.1007/s00038-011-0287-z
24.
Menezes
,
A. C.
,
Cripps
,
A.
,
Buswell
,
R. A.
,
Wright
,
J.
, and
Bouchlaghem
,
D.
, “
Estimating the Energy Consumption and Power Demand of Small Power Equipment in Office Buildings
,”
Energy Build.
, Vol. 
75
,
2014
, pp. 
199
209
, https://doi.org/10.1016/j.enbuild.2014.02.011
25.
Langevin
,
J.
,
Gurian
,
P. L.
, and
Wen
,
J.
, “
Reducing Energy Consumption in Low Income Public Housing: Interviewing Residents about Energy Behaviors
,”
Appl. Energy
, Vol. 
102
,
2013
, pp. 
1358
1370
, https://doi.org/10.1016/j.apenergy.2012.07.003
26.
Swan
,
L. G.
and
Ugursal
,
V. I.
, “
Modeling of End-Use Energy Consumption in the Residential Sector: A Review of Modeling Techniques
,”
Renew. Sustain. Energy Rev.
, Vol. 
13
, No. 
8
,
2009
, pp. 
1819
1835
, https://doi.org/10.1016/j.rser.2008.09.033
27.
Hopfe
,
C. J.
and
Hensen
,
J. L. M.
, “
Uncertainty Analysis in Building Performance Simulation for Design Support
,”
Energy Build.
, Vol. 
43
, No. 
10
,
2011
, pp. 
2798
2805
, https://doi.org/10.1016/j.enbuild.2011.06.034
28.
Neto
,
A. H.
and
Fiorelli
,
F. A. S.
, “
Comparison between Detailed Model Simulation and Artificial Neural Network for Forecasting Building Energy Consumption
,”
Energy Build.
, Vol. 
40
, No. 
12
,
2008
, pp. 
2169
2176
, https://doi.org/10.1016/j.enbuild.2008.06.013
29.
Yan
,
D.
,
O’Brien
,
W.
,
Hong
,
T.
,
Feng
,
X.
,
Gunay
,
H. B.
,
Tahmasebi
,
F.
, and
Mahdavi
,
A.
, “
Occupant Behavior Modeling for Building Performance Simulation: Current State and Future Challenges
,”
Energy Build.
, Vol. 
107
,
2015
, pp. 
264
278
, https://doi.org/10.1016/j.enbuild.2015.08.032
30.
Kontes
,
G. D.
,
Valmaseda
,
C.
,
Giannakis
,
G. I.
,
Katsigarakis
,
K. I.
, and
Rovas
,
D. V.
, “
Intelligent BEMS Design Using Detailed Thermal Simulation Models and Surrogate-Based Stochastic Optimization
,”
J. Process Control
, Vol. 
24
, No. 
6
,
2014
, pp. 
846
855
, https://doi.org/10.1016/j.jprocont.2014.04.003
31.
Hamilton
,
I. G.
,
Summerfield
,
A. J.
,
Lowe
,
R.
,
Ruyssevelt
,
P.
,
Elwell
,
C. A.
, and
Oreszczyn
,
T.
, “
Energy Epidemiology: A New Approach to End-Use Energy Demand Research
,”
Build. Res. Inf.
, Vol. 
41
, No. 
4
,
2013
, pp. 
482
497
, https://doi.org/10.1080/09613218.2013.798142
32.
Pérez-Lombard
,
L.
,
Ortiz
,
J.
, and
Pout
,
C.
, “
A Review on Buildings Energy Consumption Information
,”
Energy Build.
, Vol. 
40
, No. 
3
,
2008
, pp. 
394
398
, https://doi.org/10.1016/j.enbuild.2007.03.007
33.
Delmastro
,
C.
,
Mutani
,
G.
, and
Schranz
,
L.
, “
The Evaluation of Buildings Energy Consumption and the Optimization of District Heating Networks: A GIS-Based Model
,”
Int. J. Energy Environ. Eng.
, Vol. 
7
, No. 
3
,
2016
, pp. 
343
351
, https://doi.org/10.1007/s40095-015-0161-5
34.
Lee
,
B.
,
Trcka
,
M.
, and
Hensen
,
J. L. M.
, “
Building Energy Simulation and Optimisation: A Case Study of Industrial Halls with Varying Process Loads and Occupancy Patterns
,”
Build. Simul.
, Vol. 
7
, No. 
3
,
2014
, pp. 
229
236
, https://doi.org/10.1007/s12273-013-0154-3
35.
Saelens
,
D.
,
Parys
,
W.
, and
Baetens
,
R.
, “
Energy and Comfort Performance of Thermally Activated Building Systems Including Occupant Behavior
,”
Build. Environ.
, Vol. 
46
, No. 
4
,
2011
, pp. 
835
848
, https://doi.org/10.1016/j.buildenv.2010.10.012
36.
Sunikka-Blank
,
M.
and
Galvin
,
R.
, “
Introducing the Prebound Effect: The Gap between Performance and Actual Energy Consumption
,”
Build. Res. Inf.
, Vol. 
40
, No. 
3
,
2012
, pp. 
260
273
, https://doi.org/10.1080/09613218.2012.690952
This content is only available via PDF.
You do not currently have access to this content.