Abstract

The study explores the effects of three different lignocellulose fiber-reinforced (jute, coir, and water hyacinth [WH]) soils on the desiccation potential of compacted clayey silt soil. A new model was developed using artificial neural networks (ANN) for estimating cracking in soil reinforced with different fibers as a function of suction and water content. The program for ANN was developed in house using C++. Before model development, suction and water content were simultaneously monitored for 105 days along with the crack intensity factor (CIF). After model development, relative significance of each parameter (suction and water content) on the corresponding CIF was estimated. Adding lignocellulose fibers significantly increased the water retention capacity in the soil and reduced the CIF significantly as compared to unreinforced soil (almost half the amount). Obtained ANN models were efficient in predicting the CIF. The CIF is inversely proportional to water content and directly proportional to suction. The CIF value in bare soil, jute, and WH composites primarily depends on suction. Because of the increased water retention capacity of coir, the value of CIF depends equally on both suction and water content values. The log normal distribution of CIF was found in soil–jute composites.

References

1.
Panda
,
B.
,
Paul
,
S. C.
, and
Tan
,
M. J.
, “
Anisotropic Mechanical Performance of 3D Printed Fiber Reinforced Sustainable Construction Material
,”
Mater. Lett
., Vol. 
209
,
2017
, pp. 
146
149
, https://doi.org/10.1016/j.matlet.2017.07.123
2.
Panda
,
B.
,
Paul
,
S. C.
,
Hui
,
L. J.
,
Tay
,
Y. W. D.
, and
Tan
,
M. J.
, “
Additive Manufacturing of Geopolymer for Sustainable Built Environment
,”
J. Cleaner Prod.
, Vol. 
167
,
2017
, pp. 
281
288
, https://doi.org/10.1016/j.jclepro.2017.08.165
3.
Panda
,
B.
and
Tan
,
M. J.
, “
Experimental Study on Mix Proportion and Fresh Properties of Fly Ash Based Geopolymer for 3D Concrete Printing
,”
Ceram. Int
., Vol. 
44
, No. 
9
,
2018
, pp. 
10258
10265
, https://doi.org/10.1016/j.ceramint.2018.03.031
4.
Tay
,
Y. W. D.
,
Ting
,
G. H. A.
,
Qian
,
Y.
,
Panda
,
B.
,
He
,
L.
, and
Tan
,
M. J.
, “
Time Gap Effect on Bond Strength of 3D-Printed Concrete
,”
Virtual Phys. Prototyping
,
2018
, pp. 
1
10
, https://doi.org/10.1080/17452759.2018.1500420
5.
Saran
,
S.
,
Reinforced Soil and Its Engineering Applications
,
IK International Publishing House
,
Delhi, India
,
2010
, 440p.
6.
Basu
,
D.
,
Misra
,
A.
, and
Puppala
,
A. J.
, “
Sustainability and Geotechnical Engineering: Perspectives and Review
,”
Can. Geotech. J.
, Vol. 
52
, No. 
1
,
2015
, pp. 
96
113
, https://doi.org/10.1139/cgj-2013-0120
7.
Anggraini
,
V.
,
Asadi
,
A.
,
Huat
,
B. B. K.
, and
Nahazanan
,
H.
, “
Effects of Coir Fibers on Tensile and Compressive Strength of Lime Treated Soft Soil
,”
Measurement
, Vol. 
59
,
2015
, pp. 
372
381
, https://doi.org/10.1016/j.measurement.2014.09.059
8.
Correia
,
A. G.
,
Winter
,
M. G.
, and
Puppala
,
A. J.
, “
A Review of Sustainable Approaches in Transport Infrastructure Geotechnics
,”
Transp. Geotech.
, Vol. 
7
,
2016
, pp. 
21
28
, https://doi.org/10.1016/j.trgeo.2016.03.003
9.
Pourakbar
,
S.
,
Huat
,
B. B. K.
,
Asadi
,
A.
, and
Fasihnikoutalab
,
M. H.
, “
Model Study of Alkali-Activated Waste Binder for Soil Stabilization
,”
Int. J. Geosynthetics Ground Eng.
, Vol. 
2
, No. 
35
,
2016
, p. 35, https://doi.org/10.1007/s40891-016-0075-1
10.
Guo
,
Y.
,
Han
,
C.
, and
Yu
,
X.
, “
Laboratory Characterization and Discrete Element Modeling of Shrinkage and Cracking in Clay Layer
,”
Can. Geotech. J
., Vol. 
55
, No. 
5
,
2018
, pp. 
680
688
, https://doi.org/10.1139/cgj-2016-0674
11.
Vo
,
T. D.
,
Pouya
,
A.
,
Hemmati
,
S.
, and
Tang
,
A. M.
, “
Numerical Modelling of Desiccation Cracking of Clayey Soil Using a Cohesive Fracture Method
,”
Comput. Geotech.
, Vol. 
85
,
2017
, pp. 
15
27
, https://doi.org/10.1016/j.compgeo.2016.12.010
12.
Bordoloi
,
S.
,
Kashyap
,
V.
,
Garg
,
A.
,
Sreedeep
,
S.
,
Wei
,
L.
, and
Andriyas
,
S.
, “
Measurement of Mechanical Characteristics of Fiber from a Novel Invasive Weed: A Comprehensive Comparison with Fibers from Agricultural Crops
,”
Measurement
, Vol. 
113
,
2018
, pp. 
62
70
, https://doi.org/10.1016/j.measurement.2017.08.044
13.
Lee
,
F. H.
,
Lo
,
K. W.
, and
Lee
,
S. L.
, “
Tension Crack Development in Soils
,”
J. Geotech. Eng.
, Vol. 
114
, No. 
8
,
1988
, pp. 
915
929
, https://doi.org/10.1061/(ASCE)0733-9410(1988)114:8(915)
14.
Miller
,
C. J.
,
Mi
,
H.
, and
Yesiller
,
N.
, “
Experimental Analysis of Desiccation Crack Propagation in Clay Liners
,”
J. Am. Water Resour. Assoc.
, Vol. 
34
, No. 
3
,
1998
, pp. 
677
686
, https://doi.org/10.1111/j.1752-1688.1998.tb00964.x
15.
Rayhani
,
M. H. T.
,
Yanful
,
E. K.
, and
Fakher
,
A.
, “
Physical Modeling of Desiccation Cracking in Plastic Soils
,”
Eng. Geol.
, Vol. 
97
, Nos. 
1–2
,
2008
, pp. 
25
31
, https://doi.org/10.1016/j.enggeo.2007.11.003
16.
Li
,
J. H.
and
Zhang
,
L. M.
, “
Study of Desiccation Crack Initiation and Development at Ground Surface
,”
Eng. Geol.
, Vol. 
123
, No. 
4
,
2011
, pp. 
347
358
, https://doi.org/10.1016/j.enggeo.2011.09.015
17.
Krisnanto
,
S.
,
Rahardjo
,
H.
,
Fredlund
,
D. G.
, and
Leong
,
E.
C. , “
Water Content of Soil Matrix during Lateral Water Flow through Cracked Soil
,”
Eng. Geol.
, Vol. 
210
,
2016
, pp. 
168
179
, https://doi.org/10.1016/j.enggeo.2016.06.012
18.
Wang
,
Z. F.
,
Li
,
J. H.
, and
Zhang
,
L. M.
, “
Influence of Cracks on the Stability of a Cracked Soil Slope
,” presented at the
Fifth Asia-Pacific Conference on Unsaturated Soils
, Pattaya, Thailand, Feb. 29–March 2,
2012
,
Geotechnical Engineering Research and Development Center
,
Bangkok, Thailand
, pp. 
721
728
.
19.
Li
,
J. H.
,
Lu
,
Z.
,
Guo
,
L. B.
, and
Zhang
,
L. M.
, “
Experimental Study on Soil-Water Characteristic Curve for Silty Clay with Desiccation Cracks
,”
Eng. Geol.
, Vol. 
218
,
2017
, pp. 
70
76
, https://doi.org/10.1016/j.enggeo.2017.01.004
20.
Song
,
L.
,
Li
,
J. H.
,
Zhou
,
T.
, and
Fredlund
,
D. G.
, “
Experimental Study on Unsaturated Hydraulic Properties of Vegetated Soil
,”
Ecol. Eng.
, Vol. 
103
, Part A,
2017
, pp. 
207
216
, https://doi.org/10.1016/j.ecoleng.2017.04.013
21.
Costa
,
S.
,
Kodikara
,
J.
, and
Shannon
,
B.
, “
Salient Factors Controlling Desiccation Cracking of Clay in Laboratory Experiments
,”
Géotechnique
, Vol. 
63
, No. 
1
,
2013
, p. 18, https://doi.org/10.1680/geot.9.p.105
22.
Cui
,
Y.-J.
,
Tang
,
C.-S.
,
Tang
,
A. M.
, and
Ta
,
A. N.
, “
Investigation of Soil Desiccation Cracking Using an Environmental Chamber
,”
Ital. Geotech. J.
, Vol. 
1
,
2014
, pp. 
9
20
.
23.
Costa
,
S.
,
Kodikara
,
J.
,
Barbour
,
S. L.
, and
Fredlund
,
D. G.
, “
Theoretical Analysis of Desiccation Crack Spacing of a Thin, Long Soil Layer
,”
Acta Geotech.
, Vol. 
13
, No. 
1
,
2018
, pp. 
39
49
, https://doi.org/10.1007/s11440-017-0602-9
24.
Zhang
,
X.-D.
,
Chen
,
Y.-G.
,
Ye
,
W.-M.
,
Cui
,
Y.-J.
,
Deng
,
Y.-F.
, and
Chen
,
B.
, “
Effect of Salt Concentration on Desiccation Cracking Behavior of GMZ Bentonite
,”
Environ. Earth Sci.
, Vol. 
76
, No. 
15
,
2017
, p. 531, https://doi.org/10.1007/s12665-017-6872-6
25.
Bishop
,
A. W.
and
Blight
,
G. E.
, “
Some Aspects of Effective Stress in Saturated and Partly Saturated Soils
,”
Géotechnique
, Vol. 
13
, No. 
3
,
1963
, pp. 
177
197
, https://doi.org/10.1680/geot.1963.13.3.177
26.
Delage
,
P.
,
Audiguier
,
M.
,
Cui
,
Y.-J.
, and
Howat
,
M. D.
, “
Microstructure of a Compacted Silt
,”
Can. Geotech. J.
, Vol. 
33
, No. 
1
,
1996
, pp. 
150
158
, https://doi.org/10.1139/t96-030
27.
Shin
,
H.
and
Santamarina
,
J. C.
, “
Desiccation Cracks in Saturated Fine-Grained Soils: Particle-Level Phenomena and Effective-Stress Analysis
,”
Géotechnique
, Vol. 
61
, No. 
11
,
2011
, pp. 
961
972
, https://doi.org/10.1680/geot.8.p.012
28.
Blight
,
G. E.
and
Leong
,
E. C.
,
Mechanics of Residual Soils
,
Blight
G. E.
and
Leong
E. C.
, Eds.,
CRC Press
,
Boca Raton, FL
,
2012
, 392p.
29.
Tang
,
C.-S.
,
Shi
,
B.
,
Cui
,
Y.-J.
,
Liu
,
C.
, and
Gu
,
K.
, “
Desiccation Cracking Behavior of Polypropylene Fiber–Reinforced Clayey Soil
,”
Can. Geotech. J.
, Vol. 
49
, No. 
9
,
2012
, pp. 
1088
1101
, https://doi.org/10.1139/t2012-067
30.
Maran
,
J. P.
,
Sivakumar
,
V.
,
Thirugnanasambandham
,
K.
, and
Sridhar
,
R.
, “
Artificial Neural Network and Response Surface Methodology Modeling in Mass Transfer Parameters Predictions during Osmotic Dehydration of Carica Papaya L.
,”
Alexandria Eng. J.
, Vol. 
52
, No. 
3
,
2013
, pp. 
507
516
, https://doi.org/10.1016/j.aej.2013.06.007
31.
ASTM D422–63(2007)e2
Standard Test Method for Particle-Size Analysis of Soils
(Withdrawn 2016),
ASTM International
,
West Conshohocken, PA
,
2007
, www.astm.org
32.
ASTM E1755-01(2007)
Standard Method for the Determination of Ash in Biomass
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2007
, www.astm.org
33.
ASTM D4318-10
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org
34.
ASTM D2487-11
Standard Practice for Classification of Soils for Engineering Purpose (Unified Soil Classification System
) (Superseded),
ASTM International
,
West Conshohocken, PA
,
2011
, www.astm.org
35.
Jenkins
,
S. H.
, “
The Determination of Cellulose in Straws
,”
Biochem. J.
, Vol. 
24
, No. 
5
,
1930
, p. 1428, https://doi.org/10.1042/bj0241428
36.
Tarantino
,
A.
, “
Unsaturated Soils: Compacted Versus Reconstituted States
,” presented at the
Fifth International Conference of Unsaturated Soils
, Barcelona, Spain, Sep. 6–8,
2010
,
CRC Press
,
Boca Raton, FL
, pp. 
113
136
37.
ASTM D1557-12e1
Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56, 000 ft-lbf/ft3 (2, 700 kN-m/m3))
,
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
38.
Cordero
,
J. A.
,
Useche
,
G.
,
Prat
,
P. C.
,
Ledesma
,
A.
, and
Santamarina
,
J. C.
, “
Soil Desiccation Cracks as a Suction–Contraction Process
,”
Géotech. Lett.
, Vol. 
7
, No. 
4
,
2017
, pp. 
279
285
, https://doi.org/10.1680/jgele.17.00070
39.
Salazar-Ledesma
,
M.
,
Prado
,
B.
,
Zamora
,
O.
, and
Siebe
,
C.
, “
Mobility of Atrazine in Soils of a Wastewater Irrigated Maize Field
,”
Agric., Ecosyst. Environ.
, Vol. 
255
,
2018
, pp. 
73
83
, https://doi.org/10.1016/j.agee.2017.12.018
40.
Bordoloi
,
S.
,
Garg
,
A.
, and
Sekharan
,
S.
, “
A Review of Physio-Biochemical Properties of Natural Fibers and Their Application in Soil Reinforcement
,”
Adv. Civ. Eng. Mater.
, Vol. 
6
, No. 
1
,
2017
, pp. 
323
359
, https://doi.org/10.1520/acem20160076
41.
Bordoloi
,
S.
,
Hussain
,
R.
,
Sen
,
S.
,
Garg
,
A.
, and
Sreedeep
,
S.
, “
Chemically Altered Natural Fiber Impregnated Soil for Improving Subgrade Strength of Pavements
,”
Adv. Civ. Eng. Mater.
, Vol. 
7
, No. 
2
,
2017
, pp. 
48
63
, https://doi.org/10.1520/acem20170042
42.
Bordoloi
,
S.
,
Yamsani
,
S. K.
,
Garg
,
A.
,
Sreedeep
,
S.
, and
Borah
,
S.
, “
Study on the Efficacy of Harmful Weed Species Eicchornia Crassipes for Soil Reinforcement
,”
Ecol. Eng.
, Vol. 
85
,
2015
, pp. 
218
222
, https://doi.org/10.1016/j.ecoleng.2015.09.082
43.
Pejic
,
B. M.
,
Kostic
,
M. M.
,
Skundric
,
P. D.
, and
Praskalo
,
J. Z.
, “
The Effects of Hemicelluloses and Lignin Removal on Water Uptake Behavior of Hemp Fibers
,”
Bioresour. Technol.
, Vol. 
99
, No. 
15
,
2008
, pp. 
7152
7159
, https://doi.org/10.1016/j.biortech.2007.12.073
44.
Li
,
J. H.
,
Zhang
,
L. M.
,
Wang
,
Y.
, and
Fredlund
,
D. G.
, “
Permeability Tensor and Representative Elementary Volume of Saturated Cracked Soil
,”
Can. Geotech. J.
, Vol. 
46
, No. 
8
,
2009
, pp. 
928
942
, https://doi.org/10.1139/T09-037
45.
Garg
,
A.
,
Vijayaraghavan
,
V.
,
Lam
,
J. S. L.
,
Singru
,
P. M.
,
Gao
,
L.
, “
A Molecular Simulation Based Computational Intelligence Study of a Nano-Machining Process with Implications on Its Environmental Performance
,”
Swarm Evol. Comput.
, Vol. 
21
,
2015
, pp. 
54
63
, https://doi.org/10.1016/j.swevo.2015.01.001
46.
Vijayaraghavan
,
V.
and
Zhang
,
L.
, “
Effective Mechanical Properties and Thickness Determination of Boron Nitride Nanosheets Using Molecular Dynamics Simulation
,”
Nanomaterials
, Vol. 
8
, No. 
7
,
2018
, p. 546, https://doi.org/10.3390/nano8070546
47.
Vijayaraghavan
,
V.
,
Dethan
,
J. F. N.
, and
Garg
,
A.
, “
Nanomechanics and Modelling of Hydrogen Stored Carbon Nanotubes under Compression for PEM Fuel Cell Applications
,”
Comput. Mater. Sci.
, Vol. 
146
,
2018
, pp. 
176
183
, https://doi.org/10.1016/j.commatsci.2018.01.041
This content is only available via PDF.
You do not currently have access to this content.