Abstract

Artificial neural network (ANN) is one of the most suitable analytical methods used for modeling complex relationships between concrete properties and concrete mix ingredients. In the present study, common ANN is first trained to predict concrete mix proportions using experimental data sets. Experimental data sets include the content of water, cementitious materials (cement, silica fume, rice husk ash, and natural pozzolanas), coarse and fine aggregates, superplasticizer and the compressive strength, the slump, and the maximum size of the aggregates. Also, statistical analyses are used to correlate the results and the acceptable error. Then, the neural network is retrained using experimental data sets together with analytical data sets that are produced using the Iranian national concrete mix design method, empirical relationships, or both. Finally, the performance of the retrained neural networks is compared with the first one. The results show that the neural networks, which are trained using both analytical and experimental data sets, are more reliable and can be reliably used for modeling of complex relationships.

References

1.
Mehta
,
P. K.
and
Monteiro
,
P. J. M.
,
Concrete: Microstructure, Properties and Materials
, 3rd ed.,
McGraw-Hill
,
New York, NY
,
2006
, 660p.
2.
ACI 211.4R-93 “
Guide for Selecting Proportions for High-Strength Concrete with Portland Cement and Fly Ash
,” ACI Committee Report 211, American Concrete Institute, Farmington Hills, MI,
1998
, pp. 
1
13
.
3.
Building and Housing Research Center “
The National Method for Concrete Mix Design (in Persian)
,” BHRC Publication No. S-479, Tehran, Iran,
2008
, 48p.
4.
Ramezanianpour
,
A. A.
,
Marzaleh
,
K. S.
,
Esmaeilnia
,
M. O.
, and
Rahmani
,
H.
, “
Optimization of Mixture Proportions of Roller Compacted Concrete Based on Neural Network Modeling
,”
AMIRKABIR
, Vol. 
38
, No. 
2
,
2008
, pp. 
93
98
.
5.
Ji
,
J.
,
Zhao
,
Q.
,
Yan
,
G.
, and
Li
,
H.
, “
BP Network Based Mix Proportion Design of Self-Compacting Concrete
,” presented at the
Second International Conference on Innovative Computing, Information and Control
, Kumamoto, Japan, Sep. 5–7,
2007
,
IEEE
,
Piscataway, NJ
, p. 575.
6.
Oh
,
J. W.
,
Lee
,
I. W.
,
Kim
,
J. T.
, and
Lee
,
G. W.
, “
Application of Neural Network for Proportioning of Concrete Mixes
,”
ACI Mater. J.
, Vol. 
96
, No. 
1
,
1999
, pp. 
61
67
.
7.
Jamil
,
M.
,
Zain
,
M. F. M.
, and
Basri
,
H. B.
, “
Neural Network Simulator Model for Optimization in High Performance Concrete Mix Design
,”
Eur. J. Sci. Res.
, Vol. 
34
, No. 
1
,
2009
, pp. 
61
68
.
8.
Ji
,
T.
,
Lin
,
T.
, and
Lin
,
X.
, “
A Concrete Mix Proportion Design Algorithm Based on Artificial Neural Networks
,”
Cem. Concr. Res.
, Vol. 
36
, No. 
7
,
2006
, pp. 
1399
1408
, https://doi.org/10.1016/j.cemconres.2006.01.009
9.
Pala
,
M.
,
Ozbay
,
E.
, and
Oztas
,
A.
, “
Appraisal of Long-Term Effects of Fly Ash and Silica Fume on Compressive Strength of Concrete by Neural Networks
,”
Constr. Build. Mater.
, Vol. 
21
, No. 
2
,
2007
, pp. 
384
394
, https://doi.org/10.1016/j.conbuildmat.2005.08.009
10.
Khan
,
M. I.
, “
Mix Proportions for HPC Incorporating Multi-Cementitious Composites Using Artificial Neural Networks
,”
Constr. Build. Mater.
, Vol. 
28
, No. 
1
,
2012
, pp. 
14
20
, https://doi.org/10.1016/j.conbuildmat.2011.08.021
11.
Dias
,
W. P. S.
and
Pooliyadda
,
S. P.
, “
Neural Networks for Predicting Properties of Concretes with Admixtures
,”
Constr. Build. Mater.
, Vol. 
15
, No. 
7
,
2001
, pp. 
371
379
, https://doi.org/10.1016/S0950-0618(01)00006-X
12.
Asteris
,
P. G.
and
Kolovos
,
K. G.
, “
Self-Compacting Concrete Strength Prediction Using Surrogate Models
,”
Neural Comp. Appl.
,
2017
, pp. 
1
16
, https://doi.org/10.1007/s00521-017-3007-7
13.
Asteris
,
P. G.
,
Kolovos
,
K. G.
,
Douvika
,
M. G.
, and
Roinos
,
K.
, “
Prediction of Self-Compacting Concrete Strength Using Artificial Neural Networks
,”
Eur. J. Environ. Civ. Eng.
, Vol. 
20
, No. 
S1
,
2016
, pp. 
s102
s122
, https://doi.org/10.1080/19648189.2016.1246693
14.
Asteris
,
P. G.
,
Roussis
,
P. C.
, and
Douvika
,
M. G.
, “
Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials
,”
Sensors (Basel)
, Vol. 
17
, No. 
6
,
2017
, p. 1344, https://doi.org/10.3390/s17061344
15.
Silva
,
D.
,
Spatti
,
D. H.
,
Flauzino
,
R. A.
,
Liboni
,
L. H. B.
, and
Alves
,
S. F. D. R.
,
Artificial Neural Networks, A Practical Course
,
Springer International Publishing
,
Cham, Switzerland
,
2017
, 307p.
16.
Asteris
,
P. G.
and
Plevris
,
V.
, “
Anisotropic Masonry Failure Criterion Using Artificial Neural Networks
,”
Neural Comp. Appl.
, Vol. 
28
, No. 
8
,
2017
, pp. 
2207
2229
, https://doi.org/10.1007/s00521-016-2181-3
17.
Adeli
,
H.
and
Yeh
,
I. C.
, “
Perceptron Learning in Engineering Design
,”
Comput.-Aided Civ. Infrastruct. Eng.
, Vol. 
4
, No. 
4
,
1989
, pp. 
247
256
, https://doi.org/10.1111/j.1467-8667.1989.tb00026.x
18.
Messner
,
J. I.
,
Sanvido
,
V. E.
, and
Kumara
,
S. R. T.
, “
StructNet: A Neural Network for Structural System Selection
,”
Comput.-Aided Civ. Infrastruct. Eng.
, Vol. 
9
, No. 
2
,
1994
, pp. 
109
118
, https://doi.org/10.1111/j.1467-8667.1994.tb00366.x
19.
Ghaboussi
,
J.
,
Garrett
,
J. H.
, and
Wu
,
X.
, “
Knowledge-Based Modeling of Material Behavior with Neural Networks
,”
J. Eng. Mech., ASCE
, Vol. 
117
, No. 
1
,
1991
, pp. 
132
153
, https://doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132)
20.
Chen
,
H. M.
,
Qi
,
G. Z.
,
Yang
,
J. C. S.
, and
Amini
,
F.
, “
Neural Network for Structural Dynamic Model Identification
,”
J. Eng. Mech.
, Vol. 
121
, No. 
12
,
1995
, pp. 
1377
1381
, https://doi.org/10.1061/(ASCE)0733-9399(1995)121:12(1377)
21.
Yun
,
C. B.
and
Bahng
,
E. Y.
, “
Substructural Identification Using Neural Networks
,”
Comput. Struct.
, Vol. 
77
, No. 
1
,
2000
, pp. 
41
52
, https://doi.org/10.1016/S0045-7949(99)00199-6
22.
Wu
,
X.
,
Ghaboussi
,
J.
, and
Garrett
,
J. H.
, “
Use of Neural Networks in Prediction of Structural Damage
,”
Comput. Struct.
, Vol. 
42
, No. 
4
,
1992
, pp. 
649
659
, https://doi.org/10.1016/0045-7949(92)90132-J
23.
Öztaş
,
A.
,
Pala
,
M.
,
Özbay
,
E.
,
Kanca
,
E.
,
Caglar
,
N.
, and
Bhatti
,
M. A.
, “
Predicting the Compressive Strength and Slump of High Strength Concrete Using Neural Network
,”
Constr. Build. Mater.
, Vol. 
20
, No. 
9
,
2006
, pp. 
769
775
, https://doi.org/10.1016/j.conbuildmat.2005.01.054
24.
Hilmi
,
B. M.
,
Norjidah
,
A. A.
, and
Chin
,
K. Y.
, “
Production of High Strength Concrete Incorporating an Agricultural Waste–Rice Husk Ash
,” presented at the
Second International Conference on Chemical, Biological and Environmental Engineering (ICBEE 2010)
, Cairo, Egypt, Nov. 2–4,
2010
,
IEEE
,
Piscataway, NJ
, pp. 
106
109
.
25.
Yeh
,
I. C.
, “
Computer-Aided Design for Optimum Concrete Mixtures
,”
Cem. Concr. Compos.
, Vol. 
29
, No. 
3
,
2007
, pp. 
193
202
, https://doi.org/10.1016/j.cemconcomp.2006.11.001
26.
Kartini
,
K.
, “
Rice Husk Ash – Pozzolanic Material for Sustainability
,”
Int. J. Appl. Sci. Technol.
, Vol. 
1
, No. 
6
,
2011
, pp. 
169
178
.
27.
Habeeb
,
G. A.
and
Mahmud
,
H. B.
, “
Study on Properties of Rice Husk Ash and Its Use as Cement Replacement Material
,”
Mater. Res.
, Vol. 
13
, No. 
2
,
2010
, pp. 
185
190
, https://doi.org/10.1590/S1516-14392010000200011
28.
Khassaf
,
S. I.
,
Jasim
,
A. T.
, and
Mahdi.
,
F. K.
, “
Investigation the Properties of Concrete Containing Rice Husk Ash to Reduction the Seepage in Canals
,”
Int. J. Sci. Technol. Res.
, Vol. 
3
, No. 
4
,
2014
, pp. 
348
357
.
29.
Bhanja
,
S. S.
and
Sengupta
,
B.
, “
Modified Water – Cement Ratio Law for Silica Fume Concretes
,”
Cem. Concr. Res.
, Vol. 
33
, No. 
3
,
2003
, pp. 
447
450
, https://doi.org/10.1016/S0008-8846(02)00977-8
30.
Antiohos
,
S. K.
,
Papadakis
,
V. G.
, and
Tsimas
,
S.
, “
Rice Husk Ash (RHA) Effectiveness in Cement and Concrete as a Function of Reactive Silica and Fineness
,”
Cem. Concr. Res.
, Vols. 
61–62
,
2014
, pp. 
20
27
, https://doi.org/10.1016/j.cemconres.2014.04.001
31.
Metwally
,
A. A.
, “
Compressive Strength Prediction of Portland Cement Concrete with Age Using a New Model
,”
HBRC J.
, Vol. 
10
, No. 
2
,
2014
, pp. 
145
155
, https://doi.org/10.1016/j.hbrcj.2013.09.005
32.
Nguyen
,
D.
and
Widrow
,
B.
, “
Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights
,” presented at the
International Joint Conference on Neural Networks (IJCNN)
, San Diego, CA, June 17–21,
1990
,
IEEE
,
Piscataway, NJ
, pp. 
21
26
.
33.
Bluman
,
A. G.
,
Elementary Statistics, a Step by Step Approach
, 7th ed.,
McGraw-Hill
,
New York, NY
,
2009
, 896p.
34.
Hicks
,
C. H.
,
Fundamental Concepts in the Design of Experiments
, 2nd ed.,
Holt, Rinehart and Winston
,
New York, NY
,
1973
, 349p.
35.
Siddique
,
R.
, “
Utilization of Silica Fume in Concrete: Review of Hardened Properties
,”
Resour. Conserv. Recy.
, Vol. 
55
, No. 
11
,
2011
, pp. 
923
932
, https://doi.org/10.1016/j.resconrec.2011.06.012
36.
Nithyambigai
,
G.
, “
Effect of Rice Husk Ash in Concrete as Cement and Fine Aggregate
,”
Int. J. Eng. Res. Technol.
, Vol. 
4
, No. 
5
,
2015
, pp. 
934
936
.
37.
Nili
,
M.
and
Salehi
,
A.
, “
Strength Development and Absorption of High Strength Concertes Incorporating Natural Pozzolan, Fly Ash and Silica Fume
,”
Modares Civ. Eng. J.
, Vol. 
10
, No. 
4
,
2011
, pp. 
71
82
.
38.
Hossain
,
K. M. A.
,
Lachemi
,
H.
, and
Lachemi
,
M.
, “
Development of Volcanic Ash Concrete: Strength, Durability, and Microstructural Investigations
,”
ACI Mater. J.
, Vol. 
103
, No. 
1
,
2006
, pp. 
11
17
.
This content is only available via PDF.
You do not currently have access to this content.