Abstract

High-volume fly ash concrete, which incorporates more than 50 % fly ash as a replacement of cement in concrete, is a breakthrough development in concrete technology. Many of its properties have been investigated through decades of research, and the results have been disseminated. However, the construction industry has never showed confidence in using high-volume fly ash concrete. This is primarily due to its slow rate of strength development at early ages, notwithstanding its promising engineering and environmental benefits. Attempts have been made earlier to improve the early strength of the high-volume fly ash concrete by mechanical grinding, chemical activation of fly ash, addition of supplementary cementitious materials like silica fume, blast furnace slag, and metakaolin, etc. Nanosilica is a recent entry to the family of supplementary cementitious materials and has exhibited a better performance in concrete than other supplementary cementitious materials. This review discusses the limitations of high-volume fly ash concrete, most widely attempted methods to improve its early-age strength, and progress made on the use of nanosilica in this regard. The article also underlines the need for further research on nanosilica-incorporated high-volume fly ash concrete for developing a structurally viable and practically possible high-volume fly ash concrete, which could be a sustainable solution for the construction industry in future.

References

1.
Statista–The Statistics Portal “
Major Countries in Worldwide Cement Production from 2012 to 2017 (in Million Metric Tons)
,” Statista–The Statistics Portal,
2018
, http://web.archive.org/web/20180920131840/https://www.statista.com/statistics/267364/world-cement-production-by-country/ (accessed 4 May 2017).
2.
India Brand Equity Foundation “
Indian Cement Industry Analysis
,” India Brand Equity Foundation,
2018
, http://web.archive.org/web/20180920132959/https://www.ibef.org/industry/cement-presentation (accessed 14 Jan. 2018).
3.
Scrivener
,
K.
, “
A Generic Approach to Understanding the Durability of New Cementitious Materials
,” presented at the
Second International Congress on Durability of Concrete
, New Delhi, India, Dec. 4–6,
2014
,
Indian Concrete Institute
,
Chennai, India
.
4.
Envis Centre on Fly Ash “
Fly Ash Generation and Utilization 2015-2016
,” Hosted by CSIR-CBRI, http://web.archive.org/web/20180216235110/http://cbri.res.in:80/cbrienvis/flyashinfo.php (accessed 20 Jan. 2018).
5.
ASTM C618-15
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
6.
Madhavi
,
T. C.
,
Raju
,
L. S.
, and
Mathur
,
D.
, “
Durability and Strength Properties of High Volume Fly Ash Concrete
,”
J. Civ. Eng. Res.
, Vol. 
4
, No. 
2A
,
2014
, pp. 
7
11
.
7.
Yoshitake
,
I.
,
Wong
,
H.
,
Ishida
,
T.
, and
Nassif
,
A. Y.
, “
Thermal Stress of High Volume Fly-Ash (HVFA) Concrete Made with Limestone Aggregate
,”
Constr. Build. Mater.
, Vol. 
71
,
2014
, pp. 
216
225
, https://doi.org/10.1016/j.conbuildmat.2014.08.028
8.
Shah
,
U. N.
and
Modhera
,
C. D.
, “
Process Fly Ash Effect on Harden Properties of Self Compacting Concrete
,”
Int. J. Eng. Bus. Enterp. Appl.
, Vol. 
8
, No. 
2
,
2014
, pp. 
145
148
.
9.
Huang
,
C.-H.
,
Lin
,
S.-K.
,
Chang
,
C.-S.
, and
Chen
,
H.-J.
, “
Mix Proportions and Mechanical Properties of Concrete Containing Very High-Volume of Class F Fly Ash
,”
Constr. Build. Mater.
, Vol. 
46
,
2013
, pp. 
71
78
, https://doi.org/10.1016/j.conbuildmat.2013.04.016
10.
Siddique
,
R.
,
Kapoor
,
K.
,
Kadri
,
E.-H.
, and
Bennacer
,
R.
, “
Effect of Polyester Fibres on the Compressive Strength and Abrasion Resistance of HVFA Concrete
,”
Constr. Build. Mater.
, Vol. 
29
,
2012
, pp. 
270
278
, https://doi.org/10.1016/j.conbuildmat.2011.09.011
11.
Durán-Herrera
,
A.
,
Juárez
,
C. A.
,
Valdez
,
P.
, and
Bentz
,
D. P.
, “
Evaluation of Sustainable High-Volume Fly Ash Concretes
,”
Cem. Concr. Compos.
, Vol. 
33
, No. 
1
,
2011
, pp. 
39
45
, https://doi.org/10.1016/j.cemconcomp.2010.09.020
12.
Şahmaran
,
M.
,
Yaman
,
Í. Ö.
, and
Tokyay
,
M.
, “
Transport and Mechanical Properties of Self Consolidating Concrete with High Volume Fly Ash
,”
Cem. Concr. Compos.
, Vol. 
31
, No. 
2
,
2009
, pp. 
99
106
, https://doi.org/10.1016/j.cemconcomp.2008.12.003
13.
Atiş
,
C. D.
, “
Strength Properties of High-Volume Fly Ash Roller Compacted and Workable Concrete, and Influence of Curing Condition
,”
Cem. Concr. Res.
, Vol. 
35
, No. 
6
,
2005
, pp. 
1112
1121
, https://doi.org/10.1016/j.cemconres.2004.07.037
14.
Siddique
,
R.
, “
Performance Characteristics of High-Volume Class F Fly Ash Concrete
,”
Cem. Concr. Res.
, Vol. 
34
, No. 
3
,
2004
, pp. 
487
493
, https://doi.org/10.1016/j.cemconres.2003.09.002
15.
Atis
,
C. D.
, “
Abrasion-Porosity-Strength Model for Fly Ash Concrete
,”
J. Mater. Civ. Eng.
, Vol. 
15
, No. 
4
,
2003
, pp. 
408
410
, https://doi.org/10.1061/(ASCE)0899-1561(2003)15:4(408)
16.
Lockwood
,
A. H.
and
Evans
,
L.
, “
Ash in Lungs: How Breathing Coal Ash is Hazardous to Your Health
,” Earth Justice, http://web.archive.org/web/20180920133220/https://earthjustice.org/sites/default/files/files/Ash_In_Lungs_1.pdf (accessed 8 March 2018).
17.
Horwitz-Bennet
,
B.
, “
The Truth about Fly Ash
,” Building Science-Innovative Solutions for High-Performance Homes,
2015
, http://web.archive.org/web/20180920133656/https://www.greenbuildermedia.com/buildingscience/the-truth-about-fly-ash (accessed 9 March 2018).
18.
BIS IS 456:2000
Plain and Reinforced Concrete Code-of Practice
(Superseded),
Bureau of Indian Standards
,
New Delhi, India
,
2000
, www.bis.gov.in
19.
IRC 112-2011
Code of Practice for Concrete Road Bridges
,
Bureau of Indian Standards
,
New Delhi, India
,
2011
, www.bis.gov.in
20.
BIS IS 1489-1:1991
Portland-Pozzolana Cement-Specification, Part 1 Fly Ash Based
(Superseded),
Bureau of Indian Standards
,
New Delhi, India
,
1991
, www.bis.gov.in
21.
Malhotra
,
V. M.
and
Mehta
,
P. K.
,
High-Performance, High-Volume Fly Ash Concrete: Materials, Mixture Proportioning, Properties, Construction Practice and Case Histories
, Supplementary
Cementing Materials for Sustainable Development, Inc.
,
Ottawa, Canada
,
2002
, 101p.
22.
Mehta
,
P.
and
Monteiro
,
P. J. M.
,
Concrete: Microstructure, Properties and Materials
,
McGraw-Hill Education
,
New York, NY
,
2006
, 659p.
23.
Reiner
,
M.
and
Rens
,
K.
, “
High-Volume Fly Ash Concrete: Analysis and Application
,”
Pract. Period. Struct. Des. Constr.
, Vol. 
11
, No. 
1
,
2006
, pp. 
58
64
, https://doi.org/10.1061/(ASCE)1084-0680(2006)11:1(58)
24.
Fraay
,
A. L. A.
,
Bijen
,
J. M.
, and
Haan
,
Y. M.
, “
The Reaction of Fly Ash in Concrete a Critical Examination
,”
Cem. Concr. Res.
, Vol. 
19
, No. 
2
,
1989
, pp. 
235
246
, https://doi.org/10.1016/0008-8846(89)90088-4
25.
Yoshitake
,
I.
,
Komure
,
H.
,
Nassif
,
A. Y.
, and
Fukumoto
,
S.
, “
Tensile Properties of High Volume Fly Ash Concrete with Limestone Aggregate
,”
Constr. Build. Mater.
, Vol. 
49
,
2013
, pp. 
101
109
, https://doi.org/10.1016/j.conbuildmat.2013.08.020
26.
Atiş
,
C. D.
, “
Heat Evolution of High-Volume Fly Ash Concrete
,”
Cem. Concr. Res.
, Vol. 
32
, No. 
5
,
2002
, pp. 
751
756
, https://doi.org/10.1016/S0008-8846(01)00755-4
27.
Li
,
G.
, “
Properties of High-Volume Fly Ash Concrete Incorporating Nano-SiO2
,”
Cem. Concr. Res.
, Vol. 
34
, No. 
6
,
2004
, pp. 
1043
1049
, https://doi.org/10.1016/j.cemconres.2003.11.013
28.
Lam
,
L.
,
Wong
,
Y. L.
, and
Poon
,
C. S.
, “
Degree of Hydration and Gel/Space Ratio of High-Volume Fly Ash/Cement Systems
,”
Cem. Concr. Res.
, Vol. 
30
, No. 
5
,
2000
, pp. 
747
756
, https://doi.org/10.1016/S0008-8846(00)00213-1
29.
Obla
,
K. H.
,
Lobo
,
C. L.
, and
Kim
,
H.
, “
The 2012 NRMCA Supplementary Cementitious Materials Use Survey
,”
NRMCA Concr. Infocus
,
2012
, http://web.archive.org/web/20180920134312/https://www.nrmca.org/aboutconcrete/NRMCA%20SCM%20SurveyinfocusJune%202012final.pdf (accessed 2 Jan. 2018).
30.
Bentz
,
D. P.
and
Ferraris
,
C. F.
, “
Rheology and Setting of High Volume Fly Ash Mixtures
,”
Cem. Concr. Compos.
, Vol. 
32
, No. 
4
,
2010
, pp. 
265
270
, https://doi.org/10.1016/j.cemconcomp.2010.01.008
31.
Rashad
,
A. M.
,
Seleem
,
H. E.-D. H.
, and
Shaheen
,
A. F.
, “
Effect of Silica Fume and Slag on Compressive Strength and Abrasion Resistance of HVFA Concrete
,”
Int. J. Concr. Struct. Mater.
, Vol. 
8
, No. 
1
,
2014
, pp. 
69
81
, https://doi.org/10.1007/s40069-013-0051-2
32.
Mardani-Aghabaglou
,
A.
and
Ramyar
,
K.
, “
Mechanical Properties of High-Volume Fly Ash Roller Compacted Concrete Designed by Maximum Density Method
,”
Constr. Build. Mater.
, Vol. 
38
,
2013
, pp. 
356
364
, https://doi.org/10.1016/j.conbuildmat.2012.07.109
33.
Yoon
,
S.
,
Monteiro
,
P. J. M.
,
Macphee
,
D. E.
,
Glasser
,
F. P.
, and
Imbabi
,
M. S.-E.
, “
Statistical Evaluation of the Mechanical Properties of High-Volume Class F Fly Ash Concretes
,”
Constr. Build. Mater.
, Vol. 
54
,
2014
, pp. 
432
442
, https://doi.org/10.1016/j.conbuildmat.2013.12.077
34.
Hannesson
,
G.
,
Kuder
,
K.
,
Shogren
,
R.
, and
Lehman
,
D.
, “
The Influence of High Volume of Fly Ash and Slag on the Compressive Strength of Self-Consolidating Concrete
,”
Constr. Build. Mater.
, Vol. 
30
,
2012
, pp. 
161
168
, https://doi.org/10.1016/j.conbuildmat.2011.11.046
35.
Kumar
,
B.
,
Tike
,
G. K.
, and
Nanda
,
P. K.
, “
Evaluation of Properties of High-Volume Fly-Ash Concrete for Pavements
,”
J. Mater. Civ. Eng.
, Vol. 
19
, No. 
10
,
2007
, pp. 
906
911
, https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(906)
36.
Jiang
,
L.
,
Liu
,
Z.
and
Ye
,
Y.
, “
Durability of Concrete Incorporating Large Volumes of Low-Quality Fly Ash
,”
Cem. Concr. Res.
, Vol. 
34
, No. 
8
,
2004
, pp. 
1467
1469
, https://doi.org/10.1016/j.cemconres.2003.12.029
37.
John
,
J.
and
Ashok
,
M.
, “
Strength Study on High Volume Fly Ash Concrete
,”
Int. J. Adv. Struct. Geotech. Eng.
, Vol. 
3
, No. 
2
,
2014
, pp. 
168
171
.
38.
Soni
,
D. K.
and
Saini
,
J.
, “
Mechanical Properties of High Volume Fly Ash (HVFA) and Concrete Subjected to Elevated 120°C Temperature
,”
Int. J. Civ. Eng. Res.
, Vol. 
5
, No. 
3
,
2014
, pp. 
241
248
.
39.
Saravanakumar
,
P.
and
Dhinakaran
,
G.
, “
Strength Characteristics of High-Volume Fly Ash-Based Recycled Aggregate Concrete
,”
J. Mater. Civ. Eng.
, Vol. 
25
, No. 
8
,
2013
, pp. 
1127
1133
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000645
40.
Sahmaran
,
M.
and
Yaman
,
I. O.
, “
Hybrid Fiber Reinforced Self-Compacting Concrete with a High-Volume Coarse Fly Ash
,”
Constr. Build. Mater.
, Vol. 
21
, No. 
1
,
2007
, pp. 
150
156
, https://doi.org/10.1016/j.conbuildmat.2005.06.032
41.
Zhu
,
J.
,
Feng
,
C.
,
Yin
,
H.
,
Zhang
,
Z.
, and
Shah
,
S. P.
, “
Effects of Colloidal NanoBoehmite and NanoS1O2 on Fly Ash Cement
,”
Constr. Build. Mater.
, Vol. 
101
,
2015
, pp. 
246
251
, https://doi.org/10.1016/j.conbuildmat.2015.10.038
42.
Bentz
,
D. P.
,
Jones
,
S. Z.
, and
Snyder
,
K. A.
, “
Design and Performance of Ternary Blend High-Volume Fly Ash Concretes of Moderate Slump
,”
Constr. Build. Mater.
, Vol. 
84
,
2015
, pp. 
409
415
, https://doi.org/10.1016/j.conbuildmat.2015.03.082
43.
Kong
,
D.
,
Corr
,
D. J.
,
Hou
,
P.
,
Yang
,
Y.
, and
Shah
,
S. P.
, “
Influence of Colloidal Silica Sol on Fresh Properties of Cement Paste as Compared to Nano-silica Powder with Agglomerates in Micron-Scale
,”
Cem. Concr. Compos.
, Vol. 
63
,
2015
, pp. 
30
41
, https://doi.org/10.1016/j.cemconcomp.2015.08.002
44.
Payá
,
J.
,
Monzó
,
J.
,
Borrachero
,
M. V.
, and
Peris-Mora
,
E.
, “
Mechanical Treatment of Fly Ashes. Part I: Physico-chemical Characterization of Ground Fly Ashes
,”
Cem. Concr. Res.
, Vol. 
25
, No. 
7
,
1995
, pp. 
1469
1479
, https://doi.org/10.1016/0008-8846(95)00141-X
45.
Xu
,
A.
and
Sarkar
,
S. L.
, “
Microstructural Study of Gypsum Activated Fly Ash Hydration in Cement Paste
,”
Cem. Concr. Res.
, Vol. 
21
, No. 
6
,
1991
, pp. 
1137
1147
, https://doi.org/10.1016/0008-8846(91)90074-R
46.
Katz
,
A. A.
, “
Microscopic Study of Alaki-Activated Fly Ash
,”
Cem. Concr. Res.
, Vol. 
28
, No. 
2
,
1998
, pp. 
197
208
, https://doi.org/10.1016/S0008-8846(97)00271-8
47.
Maltais
,
Y.
and
Marchand
,
J.
, “
Influence of Curing Temperature on Cement Hydration and Mechanical Strength Development of Fly Ash Mortars
,”
Cem. Concr. Res.
, Vol. 
27
, No. 
7
,
1997
, pp. 
1009
1020
, https://doi.org/10.1016/S0008-8846(97)00098-7
48.
Gesoğlu
,
M.
,
Güneyisi
,
E.
, and
Özbay
,
E.
, “
Properties of Self-Compacting Concretes Made with Binary, Ternary, and Quaternary Cementitious Blends of Fly Ash, Blast Furnace Slag, and Silica Fume
,”
Constr. Build. Mater.
, Vol. 
23
, No. 
5
,
2009
, pp. 
1847
1854
, https://doi.org/10.1016/j.conbuildmat.2008.09.015
49.
El-Chabib
,
H.
and
Ibrahim
,
A.
, “
The Performance of High-Strength Flowable Concrete Made with Binary, Ternary, or Quaternary Binder in Hot Climate
,”
Constr. Build. Mater.
, Vol. 
47
,
2013
, pp. 
245
253
, https://doi.org/10.1016/j.conbuildmat.2013.05.062
50.
Zhu
,
Y.
,
Yang
,
Y.
, and
Yao
,
Y.
, “
Use of Slag to Improve Mechanical Properties of Engineered Cementitious Composites (ECCs) with High Volumes of Fly Ash
,”
Constr. Build. Mater.
, Vol. 
36
,
2012
, pp. 
1076
1081
, https://doi.org/10.1016/j.conbuildmat.2012.04.031
51.
Xiaosheng
,
W.
,
Hongping
,
Z.
,
Guowei
,
L.
,
Changqing
,
Z.
, and
Lianzhen
,
X.
, “
Properties of High Volume Fly Ash Concrete Compensated by Metakaolin or Silica Fume
,”
J. Wuhan Univ. Technol.-Mater. Sci. Ed.
, Vol. 
22
, No. 
4
,
2007
, pp. 
728
732
, https://doi.org/10.1007/s11595-006-4728-0
52.
Supit
,
S. W. M.
and
Shaikh
,
F. U. A.
, “
Effect of Nano-CaCO3 on Compressive Strength Development of High Volume Fly Ash Mortars and Concretes
,”
J. Adv. Concr. Technol.
, Vol. 
12
,
2014
, pp. 
178
186
, https://doi.org/10.3151/jact.12.178
53.
Shaikh
,
F. U. A.
,
Supit
,
S. W. M.
, and
Sarker
,
P. K.
, “
A Study on the Effect of Nano Silica on Compressive Strength of High Volume Fly Ash Mortars and Concretes
,”
Mater. Des.
, Vol. 
60
,
2014
, pp. 
433
442
, https://doi.org/10.1016/j.matdes.2014.04.025
54.
Patel
,
I.
and
Modhera
,
C. D.
, “
Experimental Investigation to Study Effect of Polyester Fibre on Durability of HVFA Concrete through RCPT Method
,”
IOSR J. Eng.
, Vol. 
3
, No. 
6
,
2013
, pp. 
22
27
, https://doi.org/10.9790/3021-03622227
55.
Rohit
,
M.
,
Patel
,
I.
, and
Modhera
,
C. D.
, “
Comparative Study on Flexural Strength of Plain and Fibre Reinforced HVFA Concrete by Destructive and Non Destructive Techniques
,”
Int. J. Eng. Sci.
, Vol. 
1
, No. 
2
,
2012
, pp. 
42
48
.
56.
Sounthararajan
,
V. M.
and
Sivakumar
,
A.
, “
Performance Evaluation of Metallic Fibers on the Low and High Volume Class F Flyash Based Cement Concrete
,”
Int. J. Eng. Technol.
, Vol. 
5
, No. 
2
,
2013
, pp. 
606
619
.
57.
Wu
,
J. H.
,
Pu
,
X. C.
,
Liu
,
F.
, and
Wang
,
C.
, “
High Performance Concrete with High Volume Fly Ash
,”
Key Eng. Mater.
, Vols. 
302–303
,
2006
, pp. 
470
478
, https://doi.org/10.4028/www.scientific.net/KEM.302-303.470
58.
Younsi
,
A.
,
Turcry
,
P.
,
Rozière
,
E.
,
Aït-Mokhtar
,
A.
, and
Loukili
,
A.
, “
Performance-Based Design and Carbonation of Concrete with High Fly Ash Content
,”
Cem. Concr. Compos.
, Vol. 
33
, No. 
10
,
2011
, pp. 
993
1000
, https://doi.org/10.1016/j.cemconcomp.2011.07.005
59.
Sobolev
,
K.
,
Flores
,
I.
,
Hermosillo
,
R.
, and
Torres-Martinez
,
L. M.
, “
Nanomaterials and Nanotechnology for High-Performance Cement Composites
,” presented at the
ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives
, Nov. 7,
2006
,
Denver, CO, ACI International
,
Los Angeles, CA
, pp. 
91
112
.
60.
Mukharjee
,
B. B.
and
Barai
,
S. V.
, “
Characteristics of Mortars Containing Colloidal Nanosilica
,”
Int. J. Appl. Eng. Res.
, Vol. 
9
, No. 
1
,
2014
, pp. 
17
22
.
61.
García-Taengua
,
E.
,
Sonebi
,
M.
,
Hossain
,
K. M. A.
,
Lachemi
,
M.
, and
Khatib
,
J.
, “
Effects of the Addition of Nanosilica on the Rheology, Hydration and Development of the Compressive Strength of Cement Mortars
,”
Composites Part B
, Vol. 
81
,
2015
, pp. 
120
129
, https://doi.org/10.1016/j.compositesb.2015.07.009
62.
Isfahani
,
F. T.
,
Redaelli
,
E.
,
Li
,
W.
, and
Sun
,
Y.
, “
Effects of Nanosilica on Early Age Stages of Cement Hydration
,”
J. Nanomater.
, Vol. 
2017
,
2017
, pp. 
1
9
, https://doi.org/10.1155/2017/4687484
63.
Thomas
,
J. J.
,
Jennings
,
H. M.
, and
Chen
,
J. J.
, “
Influence of Nucleation Seeding on the Hydration Mechanisms of Tricalcium Silicate and Cement
,”
J. Phys. Chem.
, Vol. 
113
, No. 
11
,
2009
, pp. 
4327
4334
.
64.
Björnström
,
J.
,
Martinelli
,
A.
,
Matic
,
A.
,
Börjesson
,
L.
, and
Panas
,
I.
, “
Accelerating Effects of Colloidal Nano-silica for Beneficial Calcium Silicate Hydrate Formation in Cement
,”
Chem. Phys. Lett.
, Vol. 
392
, Nos. 
1–3
,
2004
, pp. 
242
248
, https://doi.org/10.1016/j.cplett.2004.05.071
65.
Hou
,
P.
,
Kawashima
,
S.
,
Kong
,
D.
,
Corr
,
D. J.
,
Qian
,
J.
, and
Shah
,
S. P.
, “
Modification Effects of Colloidal NanoSiO2 on Cement Hydration and Its Gel Properties
,”
Composites Part B
, Vol. 
45
, No. 
1
,
2013
, pp. 
440
448
, https://doi.org/10.1016/j.compositesb.2012.05.056
66.
Zapata
,
L. E.
,
Portela
,
G.
,
Suárez
,
O. M.
, and
Carrasquillo
,
O.
, “
Rheological Performance and Compressive Strength of Superplasticized Cementitious Mixtures with Micro/NanoSiO2 Additions
,”
Constr. Build. Mater.
, Vol. 
41
,
2013
, pp. 
708
716
, https://doi.org/10.1016/j.conbuildmat.2012.12.025
67.
Choolaei
,
M.
,
Rashidi
,
A. M.
,
Ardjmand
,
M.
,
Yadegari
,
A.
, and
Soltanian
,
H.
, “
The Effect of Nanosilica on the Physical Properties of Oil Well Cement
,”
Mater. Sci. Eng., A
, Vol. 
538
,
2012
, pp. 
288
294
, https://doi.org/10.1016/j.msea.2012.01.045
68.
Gaitero
,
J. J.
,
Campillo
,
I.
, and
Guerrero
,
A.
, “
Reduction of the Calcium Leaching Rate of Cement Paste by Addition of Silica Nanoparticles
,”
Cem. Concr. Res.
, Vol. 
38
, Nos. 
8–9
,
2008
, pp. 
1112
1118
, https://doi.org/10.1016/j.cemconres.2008.03.021
69.
Tobón
,
J. I.
,
Payá
,
J. J.
,
Borrachero
,
M. V.
, and
Restrepo
,
O. J.
, “
Mineralogical Evolution of Portland Cement Blended with Silica Nanoparticles and Its Effect on Mechanical Strength
,”
Constr. Build. Mater.
, Vol. 
36
,
2012
, pp. 
736
742
, https://doi.org/10.1016/j.conbuildmat.2012.06.043
70.
Bianchi
,
G. Q.
, “
Application of Nano-silica in Concrete
,” Ph.D. thesis,
Eindhoven University of Technology
, Eindhoven, the Netherlands,
2014
.
71.
Singh
,
L. P.
,
Bhattacharyya
,
S. K.
,
Singh
,
P.
, and
Ahalawat
,
S.
, “
Granulometric Synthesis and Characterization of Dispersed Nanosilica Powder and Its Application in Cementitious System
,”
Adv. Appl. Ceram.
, Vol. 
111
, No. 
4
,
2012
, pp. 
220
227
, https://doi.org/10.1179/1743676112Y.0000000002
72.
Ltifi
,
M.
,
Guefrech
,
A.
,
Mounanga
,
P.
, and
Khelidj
,
A.
, “
Experimental Study of the Effect of Addition of Nano-silica on the Behaviour of Cement Mortars
,”
Procedia Eng.
, Vol. 
10
,
2011
, pp. 
900
905
, https://doi.org/10.1016/j.proeng.2011.04.148
73.
Singh
,
L. P.
,
Agarwal
,
S. K.
,
Bhattacharyya
,
S. K.
,
Sharma
,
U.
, and
Ahalawat
,
S.
, “
Preparation of Silica Nanoparticles and Its Beneficial Role in Cementitious Materials
,”
Nanomater. Nanotechnol.
, Vol. 
1
,
2011
, pp. 
44
51
.
74.
Senff
,
L.
,
Labrincha
,
J. A.
,
Ferreira
,
V. M.
,
Hotza
,
D.
, and
Repette
,
W. L.
, “
Effect of Nano-silica on Rheology and Fresh Properties of Cement Pastes and Mortars
,”
Constr. Build. Mater.
, Vol. 
23
, No. 
7
,
2009
, pp. 
2487
2491
, https://doi.org/10.1016/j.conbuildmat.2009.02.005
75.
Lin
,
D. F.
,
Lin
,
K. L.
,
Chang
,
W. C.
,
Luo
,
H. L.
, and
Cai
,
M. Q.
, “
Improvements of NanoSiO2 on Sludge/Fly Ash Mortar
,”
Waste Manage.
, Vol. 
28
, No. 
6
,
2008
, pp. 
1081
1087
, https://doi.org/10.1016/j.wasman.2007.03.023
76.
Zhang
,
M.-H.
and
Islam
,
J.
, “
Use of Nano-silica to Reduce Setting Time and Increase Early Strength of Concretes with High Volume Fly Ash or Slag
,”
Constr. Build. Mater.
, Vol. 
29
,
2012
, pp. 
573
580
, https://doi.org/10.1016/j.conbuildmat.2011.11.013
77.
Land
,
G.
and
Stephan
,
D.
, “
The Influence of Nano-silica on the Hydration of Ordinary Portland Cement
,”
J. Mater. Sci.
, Vol. 
47
, No. 
2
,
2012
, pp. 
1011
1017
, https://doi.org/10.1007/s10853-011-5881-1
78.
Korpa
,
A.
,
Kowald
,
T.
, and
Trettin
,
R.
, “
Hydration Behavior, Structure and Morphology of Hydration Phases in Advanced Cement-Based Systems Containing Micro and Nanoscale Pozzolanic Additives
,”
Cem. Concr. Res.
, Vol. 
38
, No. 
7
,
2008
, pp. 
955
962
, https://doi.org/10.1016/j.cemconres.2008.02.010
79.
Jo
,
B.-W.
,
Kim
,
C.-H.
,
Tae
,
G.-H.
, and
Park
,
J.-B.
, “
Characteristics of Cement Mortar with Nano-SiO2 Particles
,”
Constr. Build. Mater.
, Vol. 
21
, No. 
6
,
2007
, pp. 
1351
1355
, https://doi.org/10.1016/j.conbuildmat.2005.12.020
80.
Varghese
,
L.
,
Rao
,
V. V. L. K.
, and
Parameswaran
,
L.
, “
Nanosilica-Added Concrete: Strength and Its Correlation with Time-Dependent Properties
,”
Proc. Inst. Civ. Eng. Constr. Mater.
,
2017
, 10p., https://doi.org/10.1680/jcoma.17.00031
81.
Lincy
,
V.
,
Rao
,
V. V. L. K.
, and
Lakshmy
,
P.
, “
A Study on Nanosilica- and Microsilica-Added Concretes under Different Transport Mechanisms
,”
Mag. Concr. Res.
,
2017
, 12p., https://doi.org/10.1680/jmacr.16.00504
82.
Qing
,
Y.
,
Zenan
,
Z.
,
Deyu
,
K.
, and
Rongshen
,
C.
, “
Influence of Nano-SiO2 Addition on Properties of Hardened Cement Paste as Compared with Silica Fume
,”
Constr. Build. Mater.
, Vol. 
21
, No. 
3
,
2007
, pp. 
539
545
, https://doi.org/10.1016/j.conbuildmat.2005.09.001
83.
Ghafoori
,
N.
,
Batilov
,
I. B.
, and
Najimi
,
M.
, “
Sulfate Resistance of Nanosilica and Microsilica Contained Mortars
,”
ACI Mater. J.
, Vol. 
113
, No. 
4
,
2016
, pp. 
459
469
.
84.
Zeidan
,
M.
and
Said
,
A.
, “
Alkali-Silica Reaction Mitigation Using Nano-silica and Fly Ash
,” presented at the
Fifth International Symposium on Nanotechnology in Construction (NICOM5)
, Chicago, IL, May 24–26,
2015
,
Springer Publishing
,
New York, NY
, pp. 
459
464
.
85.
Lim
,
S.
and
Mondal
,
P.
, “
Effects of Incorporating Nanosilica on Carbonation of Cement Paste
,”
J. Mater. Sci.
, Vol. 
50
, No. 
10
,
2015
, pp. 
3531
3540
, https://doi.org/10.1007/s10853-015-8910-7
86.
Hou
,
P.
,
Wang
,
K.
,
Qian
,
J.
,
Kawashima
,
S.
,
Kong
,
D.
, and
Shah
,
S. P.
, “
Effects of Colloidal Nano-SiO2 on Fly Ash Hydration
,”
Cem. Concr. Compos.
, Vol. 
34
, No. 
10
,
2012
, pp. 
1095
1103
, https://doi.org/10.1016/j.cemconcomp.2012.06.013
87.
Yazdi
,
A. D.
,
Sohrabi
,
M. R.
, and
Ghasemi
,
M. R.
, “
Investigation on Nanosilica Effects on High Volume Fly Ash Concrete
,” presented at the
First International Conference on Concrete Technology
, Tabriz, Iran, Nov. 6–7,
2009
,
Civilica
,
Tehran, Iran
.
88.
Corr
,
D. J.
and
Shah
,
S. P.
,
Design and Application of High-Volume Fly Ash Self-Consolidating Concrete with the Incorporation of Nanoparticles
, Final Report, Northwestern University, Evanston, IL,
2011
, 90p.
89.
Roychand
,
R.
,
De Silva
,
S.
,
Law
,
D.
, and
Setunge
,
S.
, “
Micro and Nano Engineered High Volume Ultrafine Fly Ash Cement Composite with and without Additives
,”
Int. J. Concr. Struct. Mater.
, Vol. 
10
, No. 
1
,
2016
, pp. 
113
124
, https://doi.org/10.1007/s40069-015-0122-7
90.
Shaikh
,
F. U. A.
and
Supit
,
S.
, “
Chloride Induced Corrosion Durability of High Volume Fly Ash Concretes Containing Nano Particles
,”
Constr. Build. Mater.
, Vol. 
99
,
2015
, pp. 
208
225
, https://doi.org/10.1016/j.conbuildmat.2015.09.030
91.
Birgisson
,
B.
,
Mukhopadhyay
,
A. K.
,
Geary
,
G.
,
Khan
,
M.
, and
Sobolev
,
K.
, “
Nanotechnology in Concrete Materials
,”
Transportation Research Circular E-C170
,
Transportation Research Board
,
Washington, DC
,
2012
, 33p.
92.
Phoohinkong
,
W.
and
Kitthawee
,
U.
, “
Low-Cost and Fast Production of Nano-silica from Rice Husk Ash
,”
Adv. Mater. Res.
, Vol. 
979
,
2014
, pp. 
216
219
, https://doi.org/10.4028/www.scientific.net/AMR.979.216
93.
Rafiee
,
E.
,
Shahebrahimi
,
S.
,
Feyzi
,
M.
, and
Shaterzadeh
,
M.
, “
Optimization of Synthesis and Characterization of Nanosilica Produced from Rice Husk (a Common Waste Material)
,”
Int. Nano Lett.
, Vol. 
2
,
2012
, pp. 
29
37
, https://doi.org/10.1186/2228-5326-2-29
94.
Liou
,
T.-H.
and
Yang
,
C.-C.
, “
Synthesis and Surface Characteristics of Nanosilica Produced from Alkali-Extracted Rice Husk Ash
,”
Mater. Sci. Eng., B
, Vol. 
176
, No. 
7
,
2011
, pp. 
521
529
, https://doi.org/10.1016/j.mseb.2011.01.007
This content is only available via PDF.
You do not currently have access to this content.