Abstract

This article presents the potential of nonlinear resonant acoustic spectroscopy (NRAS) for noninvasive monitoring of the carbonation progress in alkali-activated slag (AAS) mortars. In the search for sustainable concrete, AAS has emerged as a potential substitute for ordinary portland cement binder. However, carbonation is reported to be an important durability concern for AAS due to the absence of portlandite. In this study, the correspondence between the physical properties and microstructural evolution of sodium silicate-activated slag (SS-AS) and sodium hydroxide-activated slag (SH-AS) mortars were studied over the full course of accelerated carbonation. The measured properties include the following: compressive strength, carbonation depth, porosity, pore size distribution, and phase assemblage. In addition, NRAS was used to track the changes in materials stiffness (linear resonance frequency) and hysteretic nonlinearity (amplitude dependency of resonance frequency). Scanning electron microscopy (SEM) images and porosimetry results showed the formation of microcracks and increased micrometer porosity in a carbonated AAS binder caused by calcium aluminum silicate hydrate decalcification; the cracking was more severe in the SS-AS than in the SH-AS. The NRAS results revealed a close correspondence between the observed microscopic changes in the samples and measured macroscopic test parameters, indicating the potential of acoustic techniques for monitoring the advancement of carbonation fronts in AAS mortars.

References

1.
Bakharev
,
T.
,
Sanjayana
,
J. G.
, and
Cheng
,
Y.-B.
, “
Resistance of Alkali-Activated Slag Concrete to Acid Attack
,”
Cem. Concr. Res.
, Vol. 
33
, No. 
10
,
2003
, pp. 
1607
1611
, https://doi.org/10.1016/S0008-8846(03)00125-X
2.
Ramezanianpour
,
A. A.
,
Kazemian
,
A.
,
Moghaddam
,
M. A.
,
Moodi
,
F.
, and
Ramezanianpour
,
A. M.
, “
Studying Effects of Low-Reactivity GGBFS on Chloride Resistance of Conventional and High Strength Concretes
,”
Mater. Struct.
, Vol. 
49
, No. 
7
,
2016
, pp. 
2597
2609
, https://doi.org/10.1617/s11527-015-0670-y
3.
Ramezanianpour
,
A. A.
,
Kazemian
,
A.
,
Radaei
,
E.
,
AzariJafari
,
H.
, and
Moghaddam
,
M. A.
, “
Influence of Iranian Low-Reactivity GGBFS on the Properties of Mortars and Concretes by Taguchi Method
,”
Comput. Concr.
, Vol. 
13
, No. 
4
,
2014
, pp. 
423
436
, https://doi.org/10.12989/cac.2014.13.4.423
4.
Bakharev
,
T.
,
Sanjayan
,
J. G.
, and
Cheng
,
Y.-B.
, “
Resistance of Alkali-Activated Slag Concrete to Carbonation
,”
Cem. Concr. Res.
, Vol. 
31
, No. 
9
,
2001
, pp. 
1277
1283
, https://doi.org/10.1016/S0008-8846(01)00574-9
5.
Sulapha
,
P.
,
Wong
,
S. F.
,
Wee
,
T. H.
, and
Swaddiwudhipong
,
S.
, “
Carbonation of Concrete Containing Mineral Admixtures
,”
J. Mater. Civ. Eng.
, Vol. 
15
, No. 
2
,
2003
, pp. 
134
143
, https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(134)
6.
Bernal
,
S. A.
,
Provis
,
J. L.
,
Walkley
,
B.
,
San Nicolas
,
R.
,
Gehman
,
J.
,
D.
,
Brice
,
D. G.
,
Kicullen
,
A. R.
,
Duxson
,
P.
, and
van Deventer
,
J. S. J.
, “
Gel Nanostructure in Alkali Activated Binders Based on Slag and Fly Ash, and Effects of Accelerated Carbonation
,”
Cem. Concr. Res.
, Vol. 
53
,
2013
, pp. 
127
144
, https://doi.org/10.1016/j.cemconres.2013.06.007
7.
Ye
,
H.
and
Radlińska
,
A.
, “
Carbonation-Induced Volume Change in Alkali-Activated Slag
,”
Constr. Build. Mater.
, Vol. 
144
,
2017
, pp. 
635
644
, https://doi.org/10.1016/j.conbuildmat.2017.03.238
8.
Hojati
,
M.
and
Radlińska
,
A.
, “
Shrinkage and Strength Development of Alkali-Activated Fly Ash-Slag Binary Cements
,”
Constr. Build. Mater.
, Vol. 
150
,
2017
, pp. 
808
816
, https://doi.org/10.1016/j.conbuildmat.2017.06.040
9.
Ye
,
H.
,
Radlińska
,
A.
, and
Neves
,
J.
, “
Drying and Carbonation Shrinkage of Cement Paste Containing Alkalis
,”
Mater. Struct.
, Vol. 
50
, No. 
2
,
2017
, pp. 
1
13
, https://doi.org/10.1617/s11527-017-1006-x
10.
Ye
,
H.
and
Radlińska
,
A.
, “
Shrinkage Mechanisms of Alkali-Activated Slag
,”
Cem. Concr. Res.
, Vol. 
88
,
2016
, pp. 
126
135
, https://doi.org/10.1016/j.cemconres.2016.07.001
11.
Mindess
,
S.
,
Young
,
J. F.
, and
Darwin
,
D.
,
Concrete
, 2nd Ed.,
Prentice Hall
,
Upper Saddle River, NJ
,
2002
, 644p.
12.
FHWA-RD-01-156 “
Corrosion Cost and Preventive Strategies in the United States
,” Report by CC Technologies Laboratories, Inc. to Federal Highway Administration, Office of Infrastructure Research and Development, NACE International, Houston, TX,
2001
, 12p.
13.
Hasanbeigi
,
A.
,
Price
,
L.
, and
Lin
,
E.
, “
Emerging Energy-Efficiency and CO2 Emission-Reduction Technologies for Cement and Concrete Production: A Technical Review
,”
Renewable Sustainable Energy Rev.
, Vol. 
16
, No. 
8
,
2012
, pp. 
6220
6238
.
14.
Pade
,
C.
and
Guimaraes
,
M.
, “
The CO2 Uptake of Concrete in a 100 Year Perspective
,”
Cem. Concr. Res.
, Vol. 
37
, No. 
9
,
2007
, pp. 
1348
1356
, https://doi.org/10.1016/j.cemconres.2007.06.009
15.
Sisomphon
,
K.
and
Franke
,
L.
, “
Carbonation Rates of Concretes Containing High Volume of Pozzolanic Materials
,”
Cem. Concr. Res.
, Vol. 
37
, No. 
12
,
2007
, pp. 
1647
1653
, https://doi.org/10.1016/j.cemconres.2007.08.014
16.
Atiş
,
C. D.
, “
Accelerated Carbonation and Testing of Concrete Made with Fly Ash
,”
Constr. Build. Mater.
, Vol. 
17
, No. 
3
,
2003
, pp. 
147
152
, https://doi.org/10.1016/S0950-0618(02)00116-2
17.
Chang
,
C.-F.
and
Chen
,
J.-W.
, “
The Experimental Investigation of Concrete Carbonation Depth
,”
Cem. Concr. Res.
, Vol. 
36
, No. 
9
,
2004
, pp. 
93
102
.
18.
Bernal
,
S. A.
,
San Nicolas
,
R.
,
Myers
,
R. J.
,
Mejía de Gutiérrez
,
R.
,
Puertas
,
F.
,
van Deventer
,
J. S. J.
, and
Provis
,
J. L.
, “
MgO Content of Slag Controls Phase Evolution and Structural Changes Induced by Accelerated Carbonation in Alkali-Activated Binders
,”
Cem. Concr. Res.
, Vol. 
57
,
2014
, pp. 
33
43
, https://doi.org/10.1016/j.cemconres.2013.12.003
19.
Villain
,
G.
,
Thiery
,
M.
, and
Platret
,
G.
, “
Measurement Methods of Carbonation Profiles in Concrete: Thermogravimetry, Chemical Analysis and Gammadensimetry
,”
Cem. Concr. Res.
, Vol. 
37
, No. 
8
,
2007
, pp. 
1182
1192
, https://doi.org/10.1016/j.cemconres.2007.04.015
20.
Chang
,
J. J.
,
Yeih
,
W.
,
Huang
,
R.
, and
Chi
,
J. M.
, “
Mechanical Properties of Carbonated Concrete
,”
J. Chin. Inst. Eng.
, Vol. 
26
, No. 
4
,
2003
, pp. 
295
308
.
21.
Bouchaala
,
F.
,
Payan
,
C.
,
Garnier
,
V.
, and
Balayssac
,
J. P.
, “
Carbonation Assessment in Concrete by Nonlinear Ultrasound
,”
Cem. Concr. Res.
, Vol. 
41
, No. 
5
,
2011
, pp. 
557
559
, https://doi.org/10.1016/j.cemconres.2011.02.006
22.
Eiras
,
J. N.
,
Kundu
,
T.
,
Popovics
,
J. T.
,
Monzó
,
J. M.
,
Borrachero
,
M. V.
, and
Payá
,
J.
, “
Effect of Carbonation on the Linear and Nonlinear Dynamic Properties of Cement-Based Materials
,”
Opt. Eng.
, Vol. 
55
, No. 
1
,
2016
, https://doi.org/10.1117/1.OE.55.1.011004
23.
Kim
,
G.
,
Kim
,
J.-Y.
,
Kurtis
,
K. E.
,
Jacobs
,
L. J.
,
Pape
,
Y. L.
, and
Guimaraes
,
M.
, “
Quantitative Evaluation of Carbonation in Concrete Using Nonlinear Ultrasound
,”
Mater. Struct.
, Vol. 
49
, Nos. 
1–2
,
2016
, pp. 
399
409
, https://doi.org/10.1617/s11527-014-0506-1
24.
Vu
,
Q. A.
,
Garnier
,
V.
,
Chaix
,
J. F.
,
Payan
,
C.
,
Lott
,
M.
, and
Eiras
,
J. N.
, “
Concrete Cover Characterisation Using Dynamic Acousto-Elastic Testing and Rayleigh Waves
,”
Constr. Build. Mater.
, Vol. 
114
,
2016
, pp. 
87
97
, https://doi.org/10.1016/j.conbuildmat.2016.03.116
25.
Puertas
,
F.
,
Palacaios
,
M.
, and
Vázquez
,
T.
, “
Carbonation Process of Alkali-Activated Slag Mortars
,”
J. Mater. Sci.
, Vol. 
41
, No. 
10
,
2006
, pp. 
3071
3082
, https://doi.org/10.1007/s10853-005-1821-2
26.
Palacios
,
M.
and
Puertas
,
F.
, “
Effect of Carbonation on Alkali-Activated Slag Paste
,”
Am. Ceram. Soc.
, Vol. 
89
, No. 
10
,
2006
, pp. 
3211
3221
, https://doi.org/10.1111/j.1551-2916.2006.01214.x
27.
Visser
,
J. H. M.
, “
Influence of the Carbon Dioxide Concentration on the Resistance to Carbonation of Concrete
,”
Constr. Build. Mater.
, Vol. 
67
,
2014
, pp. 
8
13
, https://doi.org/10.1016/j.conbuildmat.2013.11.005
28.
Morandeau
,
A.
,
Thiery
,
M.
, and
Dangla
,
P.
, “
Investigation of the Carbonation Mechanism of CH and C-S–H in Terms of Kinetics, Microstructure Changes and Moisture Properties
,”
Cement, Concr. Res.
, Vol. 
56
,
2014
, pp. 
153
170
, https://doi.org/10.1016/j.cemconres.2013.11.015
29.
Chen
,
J. J.
,
Thomas
,
J. J.
, and
Jennings
,
H. M.
, “
Decalcification Shrinkage of Cement Paste
,”
Cem. Concr. Res.
, Vol. 
36
, No. 
5
,
2006
, pp. 
801
809
, https://doi.org/10.1016/j.cemconres.2005.11.003
30.
Sevelsted
,
T. F.
and
Skibsted
,
J.
, “
Carbonation of C–S–H and C–A–S–H Samples Studied by 13C, 27Al and 29Si MAS NMR Spectroscopy
,”
Cem. Concr. Res.
, Vol. 
71
,
2015
, pp. 
56
65
, https://doi.org/10.1016/j.cemconres.2015.01.019
31.
Anugonda
,
P.
,
Wiehn
,
J. S.
, and
Turner
,
J. A.
, “
Diffusion of Ultrasound in Concrete
,”
Ultrasonics
, Vol. 
39
, No. 
6
,
2001
, pp. 
429
435
, https://doi.org/10.1016/S0041-624X(01)00077-4
32.
Zheng
,
Y.
,
Maev
,
R. G.
, and
Solodov
,
I. Y.
, “
Nonlinear Acoustic Applications for Material Characterization: A Review
,”
Can. J. Phys.
, Vol. 
77
, No. 
12
,
2000
, pp. 
927
967
, https://doi.org/10.1139/p99-059
33.
McCall
,
K. R.
and
Guyer
,
R. A.
, “
Equation of State and Wave Propagation in Hysteretic Nonlinear Elastic Materials
,”
J. Geophys. Res.
, Vol. 
99
, No. 
B12
,
1994
, pp. 
23887
23897
, https://doi.org/10.1029/94JB01941
34.
Van Den Abeele
,
K. E.
,
Sutin
,
A.
,
Carmeliet
,
J.
, and
Johnson
,
P. A.
, “
Micro-Damage Diagnostics Using Nonlinear Elastic Wave Spectroscopy (NEWS)
,”
NDT&E Int.
, Vol. 
34
, No. 
4
,
2001
, pp. 
239
248
, https://doi.org/10.1016/S0963-8695(00)00064-5
35.
Delrue
,
S.
and
Van Den Abeele
,
K.
, “
Three-Dimensional Finite Element Simulation of Closed Delaminations in Composite Materials
,”
Ultrasonics
, Vol. 
52
, No. 
2
,
2012
, pp. 
315
324
, https://doi.org/10.1016/j.ultras.2011.09.001
36.
Swamy
,
N.
and
Rigby
,
G.
, “
Dynamic Properties of Hardened Paste, Mortar and Concrete
,”
Matériaux Constr.
, Vol. 
4
, No. 
1
,
1971
, pp. 
13
40
, https://doi.org/10.1007/BF02473927
37.
Johnson
,
P. A.
,
Zinszner
,
B.
, and
Rasolofosaon
,
P. N. J.
, “
Resonance and Elastic Nonlinear Phenomena in Rock
,”
J. Geophys. Res.
, Vol. 
101
,
1996
, pp. 
11553
11564
, https://doi.org/10.1029/96JB00647
38.
Haupert
,
S.
,
Guérard
,
S.
,
Peyrin
,
F.
,
Mitton
,
D.
, and
Laugier
,
P.
, “
Non-Destructive Characterization of Cortical Bone Micro-Damage by Nonlinear Resonant Ultrasound Spectroscopy
,”
PLOS One
, Vol. 
9
, No. 
1
,
2014
, pp. 
1
11
, https://doi.org/https://doi:10.1371/journal.pone.0083599
39.
Nogueira
,
C. L.
and
Willam
,
K. J.
, “
Ultrasonic Testing of Damage in Concrete under Uniaxial Compression
,”
ACI Mater. J.
, Vol. 
98
, No. 
3
,
2001
, pp. 
265
275
.
40.
Hojati
,
M.
, “
Shrinkage Characteristics of Alkali-Activated Fly Ash-Slag Binders
,” M.S. thesis,
Pennsylvania State University
, University Park, PA,
2014
.
41.
Hojati
,
M.
, “
Shrinkage and Creep of Alkali-Activated Binders
,” Ph.D. dissertation,
Pennsylvania State University
, University Park, PA,
2017
.
42.
Shokouhi
,
P.
,
Rivière
,
J.
,
Le Bas
,
P.-Y.
, and
Ulrich
,
T. J.
, “
Nonlinear Acoustic Testing for Concrete Materials Evaluation
,”
Mater. Eval.
, Vol. 
75
, No. 
1
,
2017
, pp. 
84
93
.
43.
Mehta
,
K. P.
and
Monteiro
,
P. J. M.
,
Concrete, Microstructure, Properties and Materials
, 3rd Ed.,
McGraw-Hill
,
New York, NY
,
2006
, 1p.
44.
Shi
,
C.
,
Krivenko
,
P. V.
, and
Roy
,
D.
,
Alkali-Activated Cements and Concretes
, 1st ed.,
Taylor and Francis
,
New York, NY
,
2006
, 392p.
45.
Shi
,
C.
, “
Corrosion Resistance of Alkali-Activated Slag Cement
,”
Adv. Cem. Res.
, Vol. 
15
, No. 
2
,
2003
, pp. 
77
81
, https://doi.org/10.1680/adcr.2003.15.2.77
46.
Scherer
,
G. W.
, “
Theory of Drying
,”
Am. Ceram. Soc.
, Vol. 
73
, No. 
1
,
1990
, pp. 
3
14
, https://doi.org/10.1111/j.1151-2916.1990.tb05082.x
47.
Guyer
,
R. A.
and
Johnson
,
P. A.
,
Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete
,
Wiley-VCH
,
Weinheim, Germany
,
2009
, 410p.
48.
Li
,
N.
,
Farzadnia
,
N.
, and
Shi
,
C.
, “
Microstructural Changes in Alkali-Activated Slag Mortars Induced by Accelerated Carbonation
,”
Cem. Concr. Res.
, Vol. 
100
,
2017
, pp. 
214
226
, https://doi.org/10.1016/j.cemconres.2017.07.008
49.
Tai
,
C. Y.
and
Chen
,
F.-B.
, “
Polymorphism of CaCO, Precipitated in a Constant-Composition Environment
,”
AIChE J.
, Vol. 
44
, No. 
8
,
1998
, pp. 
1790
1798
, https://doi.org/10.1002/aic.690440810
50.
Shokouhi
,
P.
,
Jin
,
J.
, and
Zahedi
,
M.
, “
Monitoring Progressive Alkali-Silica Reaction Using Conventional and Impact-Based Nonlinear Resonance Acoustic Spectroscopy
,” presented at the
Transportation Research Board 96th Annual Meeting
, Washington, DC, Jan. 8–12,
2017
,
Transportation Research Board
,
Washington, DC
.
51.
Leśnicki
,
K. J.
,
Kim
,
J.-Y.
,
Kurtis
,
K. E.
, and
Jacobs
,
L. J.
, “
Characterization ASR Damage in Concrete Using Nonlinear Impact Resonance Acoustic Spectroscopy Technique
,”
NDT&E Int.
, Vol. 
44
, No. 
8
,
2011
, pp. 
721
727
, https://doi.org/10.1016/j.ndteint.2011.07.010
This content is only available via PDF.
You do not currently have access to this content.