Abstract

Designing concrete based on aggregate packing and optimized gradations can result in 25 % less cement content to reach a targeted compressive strength and less water-reducing admixture to obtain a required consistency. In this research, two studies were conducted: (1) an experimental analysis to determine the effects of aggregate packing on concrete strength and consistency; and (2) an investigation of the relationship between the traditional dry-rodded and the vibrated aggregate packing. Excellent correlation was found between 240 packing results, which can be applied to the modified mixture design method presented. Also, 40 slump and 120 compressive strength standard tests were performed to evaluate the effects of reducing cement content by 7.5, 15, 20, and 25 % to slump and compressive strength of concrete mixtures. The compressive strength of the optimized mixture demonstrated less susceptibility to variations due to cement content reductions when compared to nonoptimized mixtures. The Modified Coarse Factor Chart can be used to design an optimized concrete mixture efficiently in conjunction with aggregate gradation and packing, cement content, and concrete consistency.

References

1.
Moini
,
M.
,
Flores-Vivian
,
I.
,
Amirjanov
,
A.
, and
Sobolev
,
K.
, “
The Optimization of Aggregate Blends for Sustainable Low Cement Concrete
,”
Constr. Build. Mater.
, Vol. 
93
,
2015
, pp. 
627
634
, https://doi.org/10.1016/j.conbuildmat.2015.06.019
2.
Ley
,
T.
and
Cook
,
D.
, “
Aggregate Gradations for Concrete Pavement Mixtures
,”
CP Roadmap
,
Ames, IA
,
2014
.
3.
Tasi
,
C. T.
,
Li
,
L. S.
, and
Hwang
,
C. L.
, “
The Effect of Aggregate Gradation on Engineering Properties of High Performance Concrete
,”
J. ASTM Int.
, Vol. 
3
, No. 
3
,
2005
, pp. 
1
12
, https://doi.org/10.1520/JAI13410
4.
Tia
,
M.
,
Liu
,
Y.
,
Haranki
,
B.
, and
Su
,
Y.-M.
, “
Modulus of Elasticity, Creep and Shrinkage of Concrete
,” RPWO 67,
Florida Department of Transportation
,
Gainesville, FL
,
2009
.
5.
Lindquist
,
W.
,
Darwin
,
D.
,
Browning
,
J. A. K.
,
McLeod
,
H. A. K.
,
Yuan
,
J.
, and
Reynolds
,
D.
, “
Implementation of Concrete Aggregate Optimization
,”
Constr. Build. Mater.
, Vol. 
74
,
2015
, pp. 
49
56
, https://doi.org/10.1016/j.conbuildmat.2014.10.027
6.
Anson-Cartwright
,
M.
, “
Optimization of Aggregate Gradation Combinations to Improve Concrete Sustainability
,” M.A.Sc. thesis,
University of Toronto
, Toronto, Canada, 2011–unpublished.
7.
Shilstone
,
J. M.
, Sr.
, “
Concrete Mixture Optimization
,”
Concr. Int.
, Vol. 
12
, No. 
6
,
1990
, pp. 
33
39
.
8.
Richardson
,
D.
, “
Aggregate Gradation Optimization: Literature Search
,” RDT 05–001,
Missouri Department of Transportation
,
Jefferson City, MO
,
2005
, 113p.
9.
Cook
,
D.
,
Ghaeezadeh
,
A.
,
Ley
,
T.
, and
Russell
,
B.
,
Investigation of Optimized Graded Concrete for Oklahoma
,
Oklahoma Department of Transportation
,
Oklahoma City, OK
,
2013
, 156p.
10.
De Larrard
,
F.
,
Concrete Mixture Proportioning: A Scientific Approach
,
CRC Press
,
Boca Raton, FL
,
1999
, 448p.
11.
De Larrard
,
F.
, “
Concrete Optimisation with Regard to Packing Density and Rheology
,” presented at the
Third RILEM International Symposium on Rheology of Cement Suspensions Such as Fresh Concrete
, Reykjavik, Iceland, Aug. 19,
2009
,
RILEM
,
Paris, France
.
12.
Goltermann
,
P.
,
Johansen
,
V.
, and
Palbøl
,
L.
, “
Packing of Aggregates: An Alternative Tool to Determine the Optimal Aggregate Mix
,”
ACI Mater. J.
, No. 
94
, Vol. 
5
,
1997
, pp. 
435
442
.
13.
Fuller
,
W.
and
Thompson
,
S.
, “
The Laws of Proportioning Concrete
,”
Trans. Am. Soc. Civ. Eng.
, Vol. 
LIX
, No. 
2
,
1907
, pp. 
67
143
.
14.
Talbot
,
A.
and
Richart
,
F.
, “
The Strength of Concrete, its Relation to the Cement Aggregates and Water
,”
Univ. Illinois Eng. Exp. Station, Bull. 137
, Vol. 
XXI
, No. 
7
,
1923
, pp. 
1
122
.
15.
Cook
,
M. D.
,
Ghaeezadah
,
A.
, and
Ley
,
M. T.
, “
Impacts of Coarse-Aggregate Gradation on the Workability of Slip-Formed Concrete
,”
J. Mater. Civ. Eng.
, Vol. 
30
, No. 
2
,
2017
, pp. 
1
8
.
16.
Mehta
,
P. K.
and
Monteiro
,
P. J. M.
,
Concrete: Microstructure, Properties, and Materials
,
McGraw Hill
,
New York, NY
,
2014
, 704p.
17.
ASTM C150/C150M-17
Standard Specification for Portland Cement
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
18.
Antunes
,
R.
and
Tia
,
M.
, “
Influence of Intermediate-Sized Particle Content on Traditional Dry-Rodded and Vibrated Aggregate Packing
,”
Int. J. Eng. Res. Appl.
, Vol. 
8
, No. 
4
,
2018
, pp. 
21
27
.
19.
ASTM C29/C29M-17a
Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
20.
ASTM C1170/C1170M-14e1
Standard Test Method for Determining Consistency and Density of Roller-Compacted Concrete Using a Vibrating Table
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
21.
FDOT Section 346
Portland Cement Concrete
,
Florida Department of Transportation
,
Tallahassee, FL
,
2013
, 21p.
22.
FDOT Section 9.2 Volume II
Structural Concrete Production Facilities Guide
,
Florida Department of Transportation
,
Tallahassee, FL
,
2011
, 23p.
23.
ASTM C173/C173M-16
Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
24.
ASTM C143/C143M-15a
Standard Test Method for Slump of Hydraulic-Cement Concrete
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
25.
ASTM C39/C39M-18
Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
,
ASTM International
,
West Conshohocken, PA
,
2018
, www.astm.org
26.
ACI 211.1
Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete
,
American Concrete Institute
,
Farmington Hills, MI
,
1991
, www.concrete.org
27.
ASTM C192/C192M-16a
Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
28.
ASTM C117-17
Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
29.
ASTM C136 / C136M-14
Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
30.
ASTM C128-15
Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
31.
ASTM C33 / C33M-16e1
Standard Specification for Concrete Aggregates
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
32.
ASTM C127-15
Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
This content is only available via PDF.
You do not currently have access to this content.