Abstract

Ground-glass pozzolan (GP) obtained by grinding the mixed-waste glass to a similar fineness as cement can act as a supplementary cementing material (SCM), given that it is an amorphous and a pozzolanic material. The GP showed promising performance in mortar and concrete mixtures in laboratory and in large-scale field applications, enabling it to be a useful new SCM. However, while there are results about the use of GP in mortar and concrete, there is no single study covering all the aspects of using GP in mortar and concrete that satisfies the requirements of the ASTM and CSA Standard Specifications. This review on the use of GP in mortar and concrete compiles and analyzes the available data concerning the characteristics, production rates, and performance of GP used in mortar and concrete to provide the necessary information for updating the ASTM and CSA Standard Specifications to consider the GP as a new SCM.

References

1.
Park
,
S. B.
,
Lee
,
B. C.
, and
Kim
,
J. H.
, “
Studies on Mechanical Properties of Concrete Containing Waste Glass Aggregate
,”
Cem. Concr. Res.
, Vol. 
34
, No. 
12
,
2004
, pp. 
2181
2189
, https://doi.org/10.1016/j.cemconres.2004.02.006
2.
Shayan
,
A.
and
Xu
,
A.
, “
Value-Added Utilisation of Waste Glass in Concrete
,”
Cem. Concr. Res.
, Vol. 
34
, No. 
1
,
2004
, pp. 
81
89
, https://doi.org/10.1016/S0008-8846(03)00251-5
3.
FEVE “Collection for Recycling Rates in Europe,” The European Container Glass Federation, https://web.archive.org/web/20130507120745/https://www.feve.org/FEVE-STATIS-2013/Recycling-2011-Glass-coll.html (accessed 7 May 2013).
4.
Recyc-Québec “Le Verre Fiches Informatives (in French),” Recyc-Québec, Québec City, Canada,
2010
, 8p.
5.
USEPA (U.S. Environmental Protection Agency “Wastes-Resource Conservation-Common Wastes & Materials, Glass,” http://web.archive.org/web/20180410164302/https://www3.epa.gov/warm/pdfs/Glass.pdf (Accessed 12 July 2016).
6.
Wintour
,
N.
, “Working Paper No. 310, The Glass Industry: Recent Trends and Changes in Working Conditions and Employment Relations,” Sectoral Policies Department, International Labour Office, Geneva, International Labour Organization,
2015
, https://web.archive.org/web/20161213102118/https://www.ilo.org/wcmsp5/groups/public/---ed_dialogue/---sector/documents/publication/wcms_442086.pdf (Accessed 13 Dec. 2016).
8.
Hemmings
,
R. T.
, “Process for Converting Waste Glass Fiber into Value-Added Products,” USDOE Inventions & Innovation Program, Final Report No. DE-FG36-03GO13015, USDOE, Office of Energy Efficiency and Renewable Energy,
2005
, 36p.
9.
Snellings
,
R.
,
Mertens
,
G.
, and
Else
,
J.
, “
Supplementary Cementitious Materials
,”
Rev. Mineral. Geochem.
, Vol. 
74
,
2012
, pp. 
211
278
, https://doi.org/10.2138/rmg.2012.74.6
10.
Omran
,
A.
and
Tagnit-Hamou
,
A.
, “
Performance of Glass-Powder Concrete in Field Applications
,”
Constr. Build. Mater.
, Vol. 
109
,
2016
, pp. 
84
95
, https://doi.org/10.1016/j.conbuildmat.2016.02.006
11.
Idir
,
R.
,
Cyr
,
M.
, and
Tagnit-Hamou
,
A.
, “
Use of Fine Glass as ASR Inhibitor in Glass Aggregate Mortars
,”
Constr. Build. Mater.
, Vol. 
24
, No. 
7
,
2010
, pp. 
1309
1312
, https://doi.org/10.1016/j.conbuildmat.2009.12.030
12.
Idir
,
R.
,
Cyr
,
M.
, and
Tagnit-Hamou
,
A.
, “
Pozzolanic Properties of Fine and Coarse Color-Mixed Glass Cullet
,”
Cem. Concr. Compos.
, Vol. 
33
, No. 
1
,
2011
, pp. 
19
29
, https://doi.org/10.1016/j.cemconcomp.2010.09.013
13.
Shi
,
C.
,
Wu
,
Y.
,
Riefler
,
C.
, and
Wang
,
H.
, “
Characteristic and Pozzolanic Reactivity of Glass Powders
,”
Cem. Concr. Res.
, Vol. 
35
, No. 
5
,
2005
, pp. 
987
993
, https://doi.org/10.1016/j.cemconres.2004.05.015
14.
Schwarz
,
N.
,
Cam
,
H.
, and
Neithalath
,
N.
, “
Influence of a Fine Glass Powder on the Durability Characteristics of Concrete and Its Comparison to Fly Ash
,”
Cem. Concr. Compos.
, Vol. 
30
, No. 
6
,
2008
, pp. 
486
496
, https://doi.org/10.1016/j.cemconcomp.2008.02.001
15.
Aladdine
,
F.
, “
Propriétés à L’état Frais, à L’état Durci et Durabilité des Bétons Incorporant du Verre Finement Broyé
,” M.S. thesis,
Université de Sherbrooke
, Sherbooke, Canada,
2009
.
16.
Zidol
,
A.
, “
Optimization of the Fineness of Glass Powder in Binary Cementitious Systems
,” M.S. thesis,
Université de Sherbrooke
, Sherbrooke, Canada,
2009
.
17.
Idir
,
R.
, “
Mécanismes d’Action des Fines et des Granulats de Verre sur la Réaction Alcali-Silice et la Réaction Pouzzolanique
,” Ph.D. thesis,
Université de Sherbrooke
, Sherbrooke, Canada,
2009
.
18.
Shao
,
Y.
,
Lefort
,
T.
,
Moras
,
S.
, and
Rodriguez
,
D.
, “
Studies on Concrete Containing Ground Waste Glass
,”
Cem. Concr. Res.
, Vol. 
30
, No. 
1
,
2000
, pp. 
91
100
, https://doi.org/10.1016/S0008-8846(99)00213-6
19.
Shayan
,
A.
and
Xu
,
A.
, “
Performance of Glass Powder as a Pozzolanic Material: A Field Trial on Concrete Slabs
,”
Cem. Concr. Res.
, Vol. 
36
, No. 
3
,
2006
, pp. 
457
468
, https://doi.org/10.1016/j.cemconres.2005.12.012
20.
Idir
,
R.
,
Cyr
,
M.
, and
Tagnit-Hamou
,
A.
, “
Role of the Nature of Reaction Products in the Differing Behaviours of Fine Glass Powders and Coarse Glass Aggregates Used in Concrete
,”
Mater. Struct.
, Vol. 
46
, Nos. 
1–2
,
2013
, pp. 
233
243
, https://doi.org/10.1617/s11527-012-9897-z
21.
Dyer
,
T. D.
and
Dhir
,
R. K.
, “
Chemical Reactions of Glass Cullet Used as Cement Component
,”
J. Mater. Civ. Eng.
, Vol. 
13
, No. 
6
,
2001
, pp. 
412
417
, https://doi.org/10.1061/(ASCE)0899-1561(2001)13:6(412)
22.
Shi
,
C.
,
Wu
,
Y.
,
Shao
,
Y.
, and
Riefler
,
C.
, “
Alkali–Aggregate Reaction of Mortar Bars Ground Glass Powder
,” presented at the
12th International Conference on AAR in Concrete
, Beijing, China, Oct. 11–15,
2004
,
China National Knowledge Infrastructure
,
Beijing, China
.
23.
Shehata
,
M. H.
and
Thomas
,
M. D.
, “
Use of Ternary Blends Containing Silica Fume and Fly Ash to Suppress Expansion Due to Alkali–Silica Reaction in Concrete
,”
Cem. Concr. Res.
, Vol. 
32
, No. 
3
,
2002
, pp. 
341
349
.
24.
Thomas
,
M. D. A.
,
Shehata
,
M. H.
,
Shashiprakash
,
S. G.
,
Hopkins
,
D. S.
, and
Cail
,
K.
, “
Use of Ternary Cementitious Systems Containing Silica Fume and Fly Ash in Concrete
,”
Cem. Concr. Res.
, Vol. 
29
, No. 
8
,
1999
, pp. 
1207
1214
, https://doi.org/10.1016/S0008-8846(99)00096-4
25.
Afshinnia
,
K.
and
Rangaraju
,
P. R.
, “
Efficiency of Ternary Blends Containing Fine Glass Powder in Mitigating Alkali–Silica Reaction
,”
Constr. Build. Mater.
, Vol. 
100
,
2015
, pp. 
234
245
, https://doi.org/10.1016/j.conbuildmat.2015.09.043
26.
Tagnit-Hamou
,
A.
, “
L’utilisation du Verre Recycle dans le Béton et le Concept de Développement Durable
,” presented at the
Colloque le développement durable et le béton
,
ACI Québec
,
Courville, Canada
,
2011
.
27.
Zidol
,
A.
,
Tohoue-Tognonvi
,
M.
, and
Tagnit-Hamou
,
A.
, “
Advances in Durable Concrete Materials Applied to the African Context
,” presented at the
International Conference in Advances in Cement and Concrete Technology in Africa
, Johannesburg, South Africa, Jan. 28–30,
2013
,
European Coal Combustion Products Association
,
Essen, Germany
.
28.
Tagnit-Hamou
,
A.
, “
Alternative Cementitious Materials-Effect of Glass Powder on Concrete Sustainability
,” presented at the
International Congress on Materials & Structural Stability (CMSS)
, Rabat, Morocco, Nov. 26–30,
2013
, Association Sciences des Matériaux et Technologies de Construction, Hosted at Faculté des Sciences de Rabat,
Université Mohammed V
,
Rabat, Morocco
.
29.
Tagnit-Hamou
,
A.
, “
Alternative Cementitious Materials for Sustainable Concrete Production in Africa
,” presented at the
International Conference in Advances in Cement and Concrete Technology in Africa
, Johannesburg, South Africa, Jan. 28–30,
2013
,
European Coal Combustion Products Association
,
Essen, Germany
.
30.
Tagnit-Hamou
,
A.
, “
Alternative Supplementary Cementitious Materials for Advances Concrete
,” presented at the
2nd International Conference on Advances in Cement and Concrete Technology in Africa (ACCTA)
, Jan. 27–29,
2016
,
International Society for Concrete Pavements
,
Johannesburg, South Africa
.
31.
Tagnit-Hamou
,
A.
and
Bengougam
,
A.
, “
Glass Powder as a Supplementary Cementitious Material
,”
Concr. Int.
, Vol. 
34
, No. 
3
,
2012
, pp. 
56
61
.
32.
Abdalla
,
A. H.
, “
Optimisation et performance des bétons incorporant de la poudre de verre comme un remplacement partiel du ciment portland
,” M.S. thesis,
University of Sherbrooke
, Sherbrooke, Canada,
2012
.
33.
Schwarz
,
N.
,
DuBois
,
M.
, and
Neithalath
,
N.
, “
Electrical Conductivity Based Characterization of Plain and Coarse Glass Powder Modified Cement Pastes
,”
Cem. Concr. Compos.
, Vol. 
29
, No. 
9
,
2007
, pp. 
656
666
, https://doi.org/10.1016/j.cemconcomp.2007.05.005
34.
Aliabdo
,
A. A.
,
Abd Elmoaty
,
M. A.
, and
Aboshama
,
A. Y.
, “
Utilization of Waste Glass Powder in the Production of Cement and Concrete
,”
Constr. Build. Mater.
, Vol. 
124
,
2016
, pp. 
866
877
, https://doi.org/10.1016/j.conbuildmat.2016.08.016
35.
Danilova
,
M.
,
2012
, “
Effet de la Poudre de Verre sur le Fluage du C-S-H
,” Ph.D. thesis,
Université de Sherbrooke
, Sherbrooke, Canada.
36.
Shi
,
C.
and
Wu
,
Y.
, “
Mixture Proportioning and Properties of Self-Consolidating Lightweight Concrete Containing Glass Powder
,”
ACI Mater. J.
, Vol. 
102
, No. 
5
,
2005
, pp. 
355
363
.
37.
Turgut
,
P.
, “
Limestone Dust and Glass Powder Wastes as New Brick Material
,”
Mater. Struct.
, Vol. 
41
, No. 
5
,
2008
, pp. 
805
813
, https://doi.org/10.1617/s11527-007-9284-3
38.
Jain
,
J. A.
and
Neithalath
,
N.
, “
Chloride Transport in Fly Ash and Glass Powder Modified Concretes—Influence of Test Methods on Microstructure
,”
Cem. Concr. Compos.
, Vol. 
32
, No. 
2
,
2010
, pp. 
148
156
, https://doi.org/10.1016/j.cemconcomp.2009.11.010
39.
Soliman
,
N. A.
and
Tagnit-Hamou
,
A.
, “
Development of Ultra-High-Performance Concrete using Glass Powder—Towards Ecofriendly Concrete
,”
Constr. Build. Mater.
, Vol. 
125
,
2016
, pp. 
600
612
, https://doi.org/10.1016/j.conbuildmat.2016.08.073
40.
Niang
,
A.
,
Roy
,
N.
, and
Tagnit-Hamou
,
A.
, “
Structural Behavior of Concrete Incorporating Glass Powder Used in Reinforced Concrete Column
,”
J. Struct. Eng.
, Vol. 
141
, No. 
3
,
2014
, pp. 
1
10
.
41.
Marland
,
G.
and
Boden
,
T.
, “
Global CO2 Emissions from Fossil-Fuel Burning, Cement Manufacture, and Gas Flaring
,”
Carbon Dioxide Information Analysis Center
,
Oak Ridge National Laboratory Oak Ridge
,
TN
,
2003
, pp. 
1751
2000
.
42.
Bonneau
,
O.
,
Lachemi
,
M.
,
Dallaire
,
E.
,
Dugat
,
J.
,
Aïtcin
,
P.-C.
, “
Mechanical Properties and Durability of Two Industrial Reactive Powder Concretes
,”
ACI Mat. J.
, Vol. 
94
, No. 
4
,
1997
, pp. 
286
290
.
43.
Habel
,
K.
,
Viviani
,
M.
,
Denarié
,
E.
,
Brühwiler
,
E.
, “
Development of the Mechanical Properties of an Ultra-High Performance Fiber Reinforced Concrete (UHPFRC)
,”
Cem. Concr. Res.
, Vol. 
36
, No. 
7
,
2006
, pp. 
1362
1370
, https://doi.org/10.1016/j.cemconres.2006.03.009
44.
Yazici
,
H.
,
Yigiter
,
H.
,
Karabulut
,
A. S.
, and
Baradan
,
B.
, “
Utilization of Fly Ash and Ground Granulated Blast Furnace Slag as an Alternative Silica Source in Reactive Powder Concrete
,”
Fuel
, Vol. 
87
, No. 
12
,
2008
, pp. 
2401
2407
, https://doi.org/10.1016/j.fuel.2008.03.005
45.
Tagnit-Hamou
,
A.
and
Bengougam
,
A.
, “
Glass Powder as a Supplementary Cementitious Material
,”
Concr. Int.
,
2012
, pp. 
56
61
.
46.
Herold
,
G.
and
Müller
,
H. S.
, “
Measurement of Porosity of Ultra High Strength Fibre Reinforced Concrete
,”
Proceedings of the International Symposium on Ultra-High Performance Concrete
,
Kassel, Germany
, Sept. 13–15
2004
, pp. 
685
694
.
47.
Ghafari
,
E.
,
Costa
,
H.
,
Júlio
,
E.
,
Portugal
,
A.
,
Durães
,
L.
, “
The Effect of Nanosilica Addition on Flowability, Strength and Transport Properties of Ultra-High Performance Concrete
,”
Mater. Des.
, Vol. 
59
,
2014
, pp. 
1
9
, https://doi.org/10.1016/j.matdes.2014.02.051
48.
Soutsos
,
M. N.
,
Millar
,
S. G.
, and
Karaiskos
,
K.
, “
Mix Design, Mechanical Properties, and Impact Resistance of Reactive Powder Concrete (RPC)
,” presented at the
International Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications
,
Honolulu, HI
, May 23–26,
2005
, International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), American Concrete Institute (ACI), Japan Concrete Institute (JCI).
49.
Graybeal
,
B.
, “
Characterization of the Behavior of Ultra-High Performance Concrete
,” PhD dissertation,
University of Maryland
, College Park, MD,
2005
.
50.
Habel
,
K.
,
Viviani
,
M.
,
Denarié
,
E.
,
Brühwiler
,
E.
, “
Development of the Mechanical Properties of an Ultra-High Performance Fiber Reinforced Concrete (UHPFRC)
,”
Cem. Concr. Res.
, Vol. 
36
, No. 
7
,
2006
, pp. 
1362
1370
, https://doi.org/10.1016/j.cemconres.2006.03.009
51.
Corinaldesi
,
V.
and
Moriconi
,
G.
, “
Mechanical and Thermal Evaluation of Ultra High Performance Fiber Reinforced Concretes for Engineering Applications
,”
Constr. Build. Mater.
, Vol. 
26
, No. 
1
,
2012
, pp. 
289
294
, https://doi.org/10.1016/j.conbuildmat.2011.06.023
52.
Yu
,
R.
,
Spiesz
,
P.
, and
Brouwers
,
H. J. H.
, “
Development of an Eco-Friendly Ultra-High Performance Concrete (UHPC) with Efficient Cement and Mineral Admixtures Uses
,”
Cem. Concr. Compo.
, Vol. 
55
,
2015
, pp. 
383
394
, https://doi.org/10.1016/j.cemconcomp.2014.09.024
53.
Randl
,
N.
,
Steiner
,
T.
,
Ofner
,
S.
,
Baumgartner
,
E.
, and
Mészöly
,
T.
, “
Development of UHPC Mixtures from an Ecological Point of View
,”
Constr. Build. Mater.
, Vol. 
67
,
2014
, pp. 
373
378
, https://doi.org/10.1016/j.conbuildmat.2013.12.102
This content is only available via PDF.
You do not currently have access to this content.