Abstract

This article describes an approach to predict chloride ingress in saturated concrete using the formation factor and chloride binding isotherm. The formation factor is calculated as the ratio of the measured electrical resistivity of concrete and the electrical resistivity of the pore solution. The chloride binding isotherms are determined experimentally by placing ground concrete powder in sodium chloride (NaCl) solutions of varying concentrations and using titration to quantify the bound chloride contents. The Nernst-Plank equation is used to predict the chloride ingress with the ionic diffusion coefficients (calculated from the formation factor) and the fitted (Freundlich) chloride binding isotherm. The simulation results correspond well with experimentally obtained chloride profiles of saturated concrete after being ponded in NaCl solution. It is found that 70 % of simulated values for total chloride contents have a relative error of less than 30 % when compared to the experimental data. The approach presented in this article can be considered as an alternative for mixture qualification and quality control, though further work is needed to benchmark this against existing procedures.

References

1.
Angst
,
U.
,
Elsener
,
B.
,
Larsen
,
C. K.
, and
Vennesland
,
Ø.
, “
Critical Chloride Content in Reinforced Concrete—A Review
,”
Cem. Concr. Res.
, Vol. 
39
, No. 
12
,
2009
, pp. 
1122
1138
, https://doi.org/10.1016/j.cemconres.2009.08.006
2.
Spragg
,
R. P.
,
Castro
,
J.
,
Li
,
W.
,
Pour-Ghaz
,
M.
,
Huang
,
P.-T.
, and
Weiss
,
J.
, “
Wetting and Drying of Concrete Using Aqueous Solutions Containing Deicing Salts
,”
Cem. Concr. Compos.
, Vol. 
33
, No. 
5
,
2011
, pp. 
535
542
, https://doi.org/10.1016/j.cemconcomp.2011.02.009
3.
Page
,
C. L.
,
Short
,
N. R.
, and
El Tarras
,
A.
, “
Diffusion of Chloride Ions in Hardened Cement Pastes
,”
Cem. Concr. Res.
, Vol. 
11
, No. 
3
,
1981
, pp. 
395
406
, https://doi.org/10.1016/0008-8846(81)90111-3
4.
Qiao
,
C.
,
Ni
,
W.
,
Wang
,
Q.
, and
Weiss
,
J.
, “
Chloride Diffusion and Wicking in Concrete Exposed to NaCl and MgCl2 Solutions
,”
J. Mater. Civ. Eng.
, Vol. 
30
, No. 
3
,
2018
, 04018015, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002192
5.
ASTM C1202-17
Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
6.
ASTM C1543-10a
Standard Test Method for Determining the Penetration of Chloride Ion into Concrete by Ponding
,
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org
7.
ASTM C1556-11a(2016)
Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
8.
Andrade
,
C.
, “
Calculation of Chloride Diffusion Coefficients in Concrete from Ionic Migration Measurements
,”
Cem. Concr. Res.
, Vol. 
23
, No. 
3
,
1993
, pp. 
724
742
, https://doi.org/10.1016/0008-8846(93)90023-3
9.
Feldman
,
R. F.
,
Chan
,
G. W.
,
Brousseau
,
R. J.
, and
Tumidajski
,
P. J.
, “
Investigation of the Rapid Chloride Permeability Test
,”
ACI Mater. J.
, Vol. 
91
, No. 
3
,
1994
, pp. 
246
255
, https://doi.org/10.14359/4330
10.
Bu
,
Y.
and
Weiss
,
J.
, “
The Influence of Alkali Content on the Electrical Resistivity and Transport Properties of Cementitious Materials
,”
Cem. Concr. Compos.
, Vol. 
51
,
2014
, pp. 
49
58
, https://doi.org/10.1016/j.cemconcomp.2014.02.008
11.
Riding
,
K. A.
,
Poole
,
J. L.
,
Schindler
,
A. K.
,
Juenger
,
M. C. G.
, and
Folliard
,
K. J.
, “
Simplified Concrete Resistivity and Rapid Chloride Permeability Test Method
,”
ACI Mater. J.
, Vol. 
105
, No. 
4
,
2008
, pp. 
390
394
, https://doi.org/10.14359/19901
12.
Julio-Betancourt
,
G. A.
and
Hooton
,
R. D.
, “
Study of the Joule Effect on Rapid Chloride Permeability Values and Evaluation of Related Electrical Properties of Concretes
,”
Cem. Concr. Res.
, Vol. 
34
, No. 
6
,
2004
, pp. 
1007
1015
, https://doi.org/10.1016/j.cemconres.2003.11.012
13.
Stanish
,
K. D.
,
Hooton
,
R. D.
, and
Thomas
,
M. D. A.
,
Testing the Chloride Penetration Resistance of Concrete: A Literature Review
,
University of Toronto
,
Toronto, Canada
,
1997
, 33p.
14.
Marchand
,
J.
and
Samson
,
E.
, “
Predicting the Service-Life of Concrete Structures – Limitations of Simplified Models
,”
Cem. Concr. Compos.
, Vol. 
31
, No. 
8
,
2009
, pp. 
515
521
, https://doi.org/10.1016/j.cemconcomp.2009.01.007
15.
Tang
,
L.
, “
Concentration Dependence of Diffusion and Migration of Chloride Ions: Part 2. Experimental Evaluations
,”
Cem. Concr. Res.
, Vol. 
29
, No. 
9
,
1999
, pp. 
1469
1474
, https://doi.org/10.1016/S0008-8846(99)00120-9
16.
Bu
,
Y.
,
Luo
,
D.
, and
Weiss
,
J.
, “
Using Fick’s Second Law and Nernst–Planck Approach in Prediction of Chloride Ingress in Concrete Materials
,”
Adv. Civ. Eng. Mater.
, Vol. 
3
, No. 
1
,
2014
, pp. 
566
585
, https://doi.org/10.1520/ACEM20140018
17.
Chalee
,
W.
and
Jaturapitakkul
,
C.
, “
Effects of W/B Ratios and Fly Ash Finenesses on Chloride Diffusion Coefficient of Concrete in Marine Environment
,”
Mater. Struct.
, Vol. 
42
, No. 
4
,
2009
, pp. 
505
514
, https://doi.org/10.1617/s11527-008-9398-2
18.
Archie
,
G. E.
, “
The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics
,”
Trans. AIME
, Vol. 
146
, No. 
1
,
2013
, pp. 
54
62
, https://doi.org/10.2118/942054-G
19.
Snyder
,
K. A.
, “
The Relationship between the Formation Factor and the Diffusion Coefficient of Porous Materials Saturated with Concentrated Electrolytes: Theoretical and Experimental Considerations
,”
Concr. Sci. Eng.
, Vol. 
3
, No. 
12
,
2001
, pp. 
216
224
.
20.
Weiss
,
W. J.
,
Barrett
,
T. J.
,
Qiao
,
C.
, and
Todak
,
H.
, “
Toward a Specification for Transport Properties of Concrete Based on the Formation Factor of a Sealed Specimen
,”
Adv. Civ. Eng. Mater.
, Vol. 
5
, No. 
1
,
2016
, pp. 
179
194
, https://doi.org/10.1520/ACEM20160004
21.
Neithalath
,
N.
and
Jain
,
J.
, “
Relating Rapid Chloride Transport Parameters of Concretes to Microstructural Features Extracted from Electrical Impedance
,”
Cem. Concr. Res.
, Vol. 
40
, No. 
7
,
2010
, pp. 
1041
1051
, https://doi.org/10.1016/j.cemconres.2010.02.016
22.
Spragg
,
R.
,
Jones
,
S.
,
Bu
,
Y.
,
Lu
,
Y.
,
Bentz
,
D.
,
Snyder
,
K.
, and
Weiss
,
J.
, “
Leaching of Conductive Species: Implications to Measurements of Electrical Resistivity
,”
Cem. Concr. Compos.
, Vol. 
79
,
2017
, pp. 
94
105
, https://doi.org/10.1016/j.cemconcomp.2017.02.003
23.
Spragg
,
R.
,
Qiao
,
C.
,
Barrett
,
T.
, and
Weiss
,
J.
, “
Assessing a Concrete’s Resistance to Chloride Ion Ingress Using the Formation Factor
,”
Corrosion of Steel in Concrete Structures
,
Woodhead Publishing
,
Oxford
,
2016
, p. 
211
238
, https://doi.org/10.1016/B978-1-78242-381-2.00011-0
24.
Bu
,
Y.
,
Spragg
,
R.
, and
Weiss
,
W. J.
, “
Comparison of the Pore Volume in Concrete as Determined Using ASTM C642 and Vacuum Saturation
,”
Adv. Civ. Eng. Mater.
, Vol. 
3
, No. 
1
,
2014
, pp. 
308
315
, https://doi.org/10.1520/ACEM20130090
25.
Spragg
,
R. P.
, “
The Rapid Assessment of Transport Properties of Cementitious Materials Using Electrical Methods
,” M.S. thesis,
Purdue University
, West Lafayette, IN,
2013
.
26.
Longuet
,
P.
,
Burglen
,
L.
, and
Zelwer
,
A.
, “
The Liquid Phase of Hydrated Cement
,”
Rev. Mater. Constr.
, Vol. 
676
,
1973
, pp. 
35
41
.
27.
Barneyback
,
R. S.
, Jr.
and
Diamond
,
S.
, “
Expression and Analysis of Pore Fluids from Hardened Cement Pastes and Mortars
,”
Cem. Concr. Res.
, Vol. 
11
, No. 
2
,
1981
, pp. 
279
285
, https://doi.org/10.1016/0008-8846(81)90069-7
28.
Tsui-Chang
,
M.
, “
The Evaluation of Cementitious Pore Solution Composition and Electrical Resistivity Using X-Ray Fluorescence (XRF)
,” M.S. thesis,
Oregon State University
, Corvallis, OR.
2017
.
29.
Delagrave
,
A.
,
Marchand
,
J.
,
Ollivier
,
J.-P.
,
Julien
,
S.
, and
Hazrati
,
K.
, “
Chloride Binding Capacity of Various Hydrated Cement Paste Systems
,”
Adv. Cem. Based Mater.
, Vol. 
6
, No. 
1
,
1997
, pp. 
28
35
, https://doi.org/10.1016/S1065-7355(97)90003-1
30.
Di Bella
,
C.
,
Villani
,
C.
,
Hausheer
,
E.
, and
Weiss
,
J.
, “
Chloride Transport Measurements for a Plain and Internally Cured Concrete Mixture
,”
ACI Special Publication
, Vol. 
290
,
2012
, pp. 
1
16
, https://doi.org/10.14359/51684183
31.
Shakouri
,
M.
and
Trejo
,
D.
, “
A Time-Variant Model of Surface Chloride Build-Up for Improved Service Life Predictions
,”
Cem. Concr. Compos.
, Vol. 
84
,
2017
, pp. 
99
110
, https://doi.org/10.1016/j.cemconcomp.2017.08.008
32.
Spragg
,
R.
,
Bu
,
Y.
,
Snyder
,
K. A.
,
Bentz
,
D. P.
, and
Weiss
,
J.
, Electrical Testing of Cement-Based Materials: Role of Testing Techniques, Sample Conditioning, and Accelerated Curing, Report FHWA/IN/JTRP-2013/28, Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, West Lafayette, IN,
2013
, 23p.
33.
Justnes
,
H.
, “
A Review of Chloride Binding in Cementitious Systems
,”
Nordic Concr. Res.
, Vol. 
21
,
1998
, pp. 
48
63
.
34.
Glass
,
G. K.
and
Buenfeld
,
N. R.
, “
The Influence of Chloride Binding on the Chloride Induced Corrosion Risk in Reinforced Concrete
,”
Corros. Sci.
, Vol. 
42
, No. 
2
,
2000
, pp. 
329
344
, https://doi.org/10.1016/S0010-938x(99)00083-9
35.
Thomas
,
M. D. A.
,
Hooton
,
R. D.
,
Scott
,
A.
, and
Zibara
,
H.
, “
The Effect of Supplementary Cementitious Materials on Chloride Binding in Hardened Cement Paste
,”
Cem. Concr. Res.
, Vol. 
42
, No. 
1
,
2012
, pp. 
1
7
, https://doi.org/10.1016/j.cemconres.2011.01.001
36.
Lin
,
C.
and
Lee
,
L.
, “
A Two-Ionic-Parameter Approach for Ion Activity Coefficients of Aqueous Electrolyte Solutions
,”
Fluid Phase Equilib.
, Vol. 
205
, No. 
1
,
2003
, pp. 
69
88
, https://doi.org/10.1016/S0378-3812(02)00275-3
37.
Snyder
,
K. A.
,
Feng
,
X.
,
Keen
,
B. D.
, and
Mason
,
T. O.
, “
Estimating the Electrical Conductivity of Cement Paste Pore Solutions from OH, K+ and Na+ Concentrations
,”
Cem. Concr. Res.
, Vol. 
33
, No. 
6
,
2003
, pp. 
793
798
, https://doi.org/10.1016/S0008-8846(02)01068-2
38.
Spragg
,
R.
,
Villani
,
C.
,
Snyder
,
K. A.
,
Bentz
,
D. P.
,
Bullard
,
J. W.
, and
Weiss
,
J.
, “
Factors that Influence Electrical Resistivity Measurements in Cementitious Systems
,”
Transp. Res. Rec.
, Vol. 
2342
,
2013
, pp. 
90
98
, https://doi.org/10.3141/2342-11
This content is only available via PDF.
You do not currently have access to this content.