Abstract

The disposal of waste rubber has attracted a great deal attention because of the serious environmental problems caused by the growing overuse of rubber products. A feasible alternative that has caused concern is the incorporation of recycled materials into cementitious composites in civil construction. The performance of such materials at ambient temperature has been fully reported in the literature. However, limited data is available on the behaviors of crumb rubber concrete (CRC) at low temperature. This article studies the features of the cubic compressive strength, splitting tensile strength, and tension-compression ratio of CRC specimens at ambient temperature of 20°C and low temperatures of 0°C and −30°C. By experimental tests, the effects of the rubber content and water-binder ratio on the mechanical properties were analyzed. It was shown that the compressive strength and splitting tensile strength of CRC are significantly enhanced with the decrease of temperature, which is similar to the case of conventional concrete, but the trend of strength growth at low temperatures differs from the trend of strength growth at the ambient temperature of 20°C. The tension-compression ratio of CRC increases gradually with the temperature decrement, indicating that the CRC still exhibits excellent ductility at low temperature. As comparative analysis, it is known that when the water-binder ratio is 0.40, and the volume replacement rate of rubber substituted for fine aggregate is 20 %, the CRC presents optimal mechanical properties at a low temperature of −30°C. The assessment of the strengths of CRC at low temperatures may support the necessary experimental data for the application of CRC at low temperatures.

References

1.
Liu
,
D. C.
, “
The Tire Retreading Industry Leading Low Carbon Energy Future (in Chinese)
,”
Mod. Rubber Technol.
, Vol. 
42
,
2016
, pp. 
9
14
, https://doi.org/10.19307/j.cnki.ctrr.2016.06.026
2.
Shu
,
X.
and
Huang
,
B. S.
, “
Recycling of Waste Tire Rubber in Asphalt and Portland Cement Concrete: An Overview
,”
Constr. Building Mater.
, Vol. 
67
, Part B,
2014
, pp. 
217
224
, https://doi.org/10.1016/j.conbuildmat.2013.11.027
3.
Gupta
,
T.
,
Chaudhary
,
S.
, and
Sharma
,
R. K.
, “
Assessment of Mechanical and Durability Properties of Concrete Containing Waste Rubber Tire as Fine Aggregate
,”
Constr. Building Mater.
, Vol. 
73
,
2014
, pp. 
562
574
, https://doi.org/10.1016/j.conbuildmat.2014.09.102
4.
Richardson
,
A.
,
Coventry
,
K.
,
Edmondson
,
V.
, and
Dias
,
E.
, “
Crumb rubber Used in Concrete to Provide Freeze-Thaw Protection (Optimal Particle Size)
,”
J. Cleaner Prod.
, Vol. 
112
, Part 1,
2016
, pp. 
599
606
, https://doi.org/10.1016/j.jclepro.2015.08.028
5.
Bravo
,
M.
and
de Brito
,
J.
, “
Concrete Made with Used Tyre Aggregate: Durability-Related Performance
,”
J. Cleaner Prod.
, Vol. 
25
,
2012
, pp. 
42
50
, https://doi.org/10.1016/j.jclepro.2011.11.066
6.
Pacheco-Torgal
,
F.
,
Ding
,
Y.
, and
Jalali
,
S.
, “
Properties and Durability of Concrete Containing Polymeric Wastes (Tyre Rubber and Polyethylene Terephthalate Bottles): An Overview
,”
Constr. Building Mater.
, Vol. 
30
,
2012
, pp. 
714
724
, https://doi.org/10.1016/j.conbuildmat.2011.11.047
7.
Cheng
,
Z.
and
Shi
,
Z.
, “
Vibration Attenuation Properties of Periodic Rubber Concrete Panels
,”
Constr. Building Mater.
, Vol. 
50
,
2014
, pp. 
257
265
, https://doi.org/10.1016/j.conbuildmat.2013.09.060
8.
Gregorio
,
O.
and
Adam
,
W.
, “
UV Modification of Tire Rubber for Use in Cementitious Composites
,”
Cem. Concr. Compos.
, Vol. 
52
,
2014
, pp. 
34
41
, https://doi.org/10.1016/j.cemconcomp.2014.04.004
9.
Mohammadi
,
I.
,
Khabbaz
,
H.
, and
Vessalas
,
K.
, “
Enhancing Mechanical Performance of Rubberised Concrete Pavements with Sodium Hydroxide Treatment
,”
Mater. Struct.
, Vol. 
49
, No. 
3
,
2016
, pp. 
813
827
, https://doi.org/10.1617/s11527-015-0540-7
10.
Richardson
,
A. E.
,
Coventry
,
K. A.
, and
Ward
,
G.
, “
Freeze/Thaw Protection of Concrete with Optimum Rubber Crumb Content
,”
J. Cleaner Prod.
, Vol. 
23
, No. 
1
,
2012
, pp. 
96
103
, https://doi.org/10.1016/j.jclepro.2011.10.013
11.
Richardson
,
A.
,
Coventry
,
K.
,
Edmondson
,
V.
, and
Dias
,
E.
, “
Crumb Rubber used in Concrete to Provide Freeze-Thaw Protection (Optimal Particle Size)
,”
J. Cleaner Prod.
, Vol. 
112
, Part 1,
2016
, pp. 
599
606
, https://doi.org/10.1016/j.jclepro.2015.08.028
12.
Zheng
,
L.
,
Hou
,
X. S.
, and
Yuan
,
Y.
, “
Strength Modulus of Elasticity and Brittleness Index of Rubberized Concrete
,”
J. Mater. Civ. Eng.
, Vol. 
20
, No. 
11
,
2008
, pp. 
692
699
, https://doi.org/10.1061/(ASCE)0899-1561(2008)20:11(692)
13.
Zhu
,
X. B.
,
Miao
,
C. W.
,
Liu
,
J. P.
, and
Hong
,
J. X.
, “
Influence of Crumb Rubber on Frost Resistance of Concrete and Effect Mechanism
,”
Procedia Eng.
, Vol. 
27
,
2012
, pp. 
206
213
, https://doi.org/10.1016/j.proeng.2011.12.445
14.
Monfore
,
G. E.
and
Lentz
,
A. E.
, “
Physical Properties of Concrete at Very Low Temperatures
,”
Portland Cem. Assoc. Res. Dev. Lab. Bull.
, Vol. 
4
, No. 
2
,
1962
, pp. 
33
39
.
15.
Shan
,
G. Z.
, “
Super Low Temperature Concrete
,”
Low Temp. Archit. Technol.
, Vol. 
2
, No. 
1
,
1980
, pp. 
57
60
.
16.
Wang
,
C. X.
,
Xie
,
J.
, and
Li
,
H. J.
, “
Experimental Research on the Properties of Concrete under Low-Temperature (in Chinese)
,”
Eng. Mech.
, Vol. 
28
,
2011
, pp. 
182
186
.
17.
When
,
X.
,
Lijun
,
L.
,
Zheng
,
J.
,
Li
,
J. G.
, and
Zhang
,
T. S.
, “
Experimental Study on Compressive Strength of Concrete Undergoing Cryogenic Freeze-Thaw Cycles from Room Temperature or −30°C to −120°C (in Chinese)
,”
Cryogenics
, Vol. 
3
,
2015
, pp. 
13
17
, 23, https://doi.org/10.3969/j.issn.1000-6516.2015.03.003
18.
Zhang
,
N.
,
Liao
,
J.
,
Ji
,
W.
,
Wang
,
Ba.
,
Zhang
,
D.
, and
Li
,
Y.
, “
Testing Method and Mechanical Properties of Concrete at Low Temperature (in Chinese)
,”
J. Chin. Ceram. Soc.
, Vol. 
42
, No. 
11
,
2014
, pp. 
1404
1408
, https://doi.org/10.7521/j.issn.0454-5648.2014.11.09
19.
Yang
,
L. H.
,
Han
,
Z.
, and
Li
,
C. F.
, “
Strengths and Flexural Strain of CRC Specimens at Low Temperature
,”
Constr. Building Mater.
, Vol. 
25
, No. 
2
,
2011
, pp. 
906
910
, https://doi.org/10.1016/j.conbuildmat.2010.06.094
20.
Zhang
,
Y. M.
,
Zhu
,
H.
, and
Yang
,
L.
, “
Brittleness of CRC of Equal Strength at Low Temperature
,”
J. Tianjin Univ.
, Vol. 
42
, No. 
3
,
2009
, pp. 
189
193
, https://doi.org/10.3969/j.issn.0493-2137.2009.03.001
21.
JGJ55-2011 “
Specification for Mix Proportion Design of Ordinary Concrete (in Chinese)
,”
Construction Ministry of China
,
China
,
2011
.
22.
GB/T 50081/2002 “
Standard for Test Method of Mechanical Properties on Ordinary Concrete (in Chinese)
,”
China Architectural Industry Press
,
Beijing, People’s Republic of China
,
2003
.
This content is only available via PDF.
You do not currently have access to this content.