Abstract

Until now, standardized methods developed for the detection of initial and final setting time of cement paste were destructive and non-continuous. The well-established ultrasonic pulse transmission velocity (UPV) method can be correlated to the setting process of cement-based materials by the measurement of P-waves. However, S-waves seem to be better indicators of the setting of cement-based materials, because they are more sensitive to the solid matrix connectivity and less dependent to the air content. A new methodology, based on the combined monitoring of P-waves and S-waves, has already been developed to determine the setting times of mortar and concrete. The purpose of this study is to extend this methodology to cement pastes. Ordinary portland cement pastes with three water/cement ratio between 0.3 and 0.5 have been investigated. In addition, a portland cement, blast-furnace slag and limestone filler blended cement paste with a 0.4 water/cement ratio is studied in order to validate all observations. This study shows that the dynamic elastic properties can be linked to the initial and final setting times of cement paste. The early age evolution of the elastic properties depends on the air content and the binder nature. The combined monitoring of P-waves and S-waves provide accurate indicators of the setting process.

References

1.
Krauß
,
M.
and
Hariri
,
K.
, “
Determination of Initial Degree of Hydration for Improvement of Early-Age Properties of Concrete Using Ultrasonic Wave Propagation
,”
Cem. Concr. Compos.
, Vol. 
28
, No. 
4
, pp. 
299
306
,
2006
, https://doi.org/10.1016/j.cemconcomp.2006.02.007
2.
Yoo
,
D.-Y.
,
Park
,
J.-J.
,
Kim
,
S.-W.
, and
Yoon
,
Y.-S.
, “
Early Age Setting, Shrinkage and Tensile Characteristics of Ultra High Performance Fiber Reinforced Concrete
,”
Constr. Build. Mater.
, Vol. 
41
, pp. 
427
438
,
2013
, https://doi.org/10.1016/j.conbuildmat.2012.12.015
3.
Shariq
,
M.
,
Prasad
,
J.
, and
Masood
,
A.
, “
Studies in Ultrasonic Pulse Velocity of Concrete Containing GGBFS
,”
Constr. Build. Mater.
, Vol. 
40
, pp. 
944
950
,
2013
, https://doi.org/10.1016/j.conbuildmat.2012.11.070
4.
Madandoust
,
R.
,
Ghavidel
,
R.
, and
Nariman-zadeh
,
N.
, “
Evolutionary Design of Generalized GMDH-Type Neural Network for Prediction of Concrete Compressive Strength Using UPV
,”
Comp. Mater. Sci.
, Vol. 
49
, No. 
3
, pp. 
556
567
,
2010
, https://doi.org/10.1016/j.commatsci.2010.05.050
5.
Khan
,
R.
,
Noorzaei
,
J.
,
Kadir
,
M.
,
Waleed
,
A.
, and
Jaafar
,
M. S.
, “
UPV Method for Strength Detection of High Performance Concrete
,”
Structural Survey
, Vol. 
25
, No. 
1
, pp. 
61
73
,
2007
, https://doi.org/10.1108/02630800710740985
6.
Trtnik
,
G.
,
Kavčič
,
F.
, and
Turk
,
G.
, “
Prediction of Concrete Strength Using Ultrasonic Pulse Velocity and Artificial Neural Networks
,”
Ultrasonics
, Vol. 
49
, No. 
1
, pp. 
53
60
,
2009
, https://doi.org/10.1016/j.ultras.2008.05.001
7.
Keating
,
J.
,
Hannant
,
D.
, and
Hibbert
,
A.
, “
Correlation Between Cube Strength, Ultrasonic Pulse Velocity and Volume Change for Oil Well Cement Slurries
,”
Cement Concrete Res.
, Vol. 
19
, No. 
5
, pp. 
715
726
,
1989
, https://doi.org/10.1016/0008-8846(89)90042-2
8.
Bogas
,
J. A.
,
Gomes
,
M. G.
, and
Gomes
,
A.
, “
Compressive Strength Evaluation of Structural Lightweight Concrete by Non-Destructive Ultrasonic Pulse Velocity Method
,”
Ultrasonics
, Vol. 
53
, No. 
5
, pp. 
962
972
,
2013
, https://doi.org/10.1016/j.ultras.2012.12.012
9.
Zhutovsky
,
S.
and
Kovler
,
K.
, “
Application of Ultrasonic Pulse Velocity for Assessment of Thermal Expansion Coefficient of Concrete at Early Age
,”
Mater. Struct.
, Vol. 
50
, No. 
1
, pp. 
1
8
,
2017
, https://doi.org/10.1617/s11527-016-0866-9
10.
Al-Mufti
,
R. L.
and
Fried
,
A.
, “
Pulse Velocity Assessment of Early Age Creep of Concrete
,”
Constr. Build. Mater.
, Vol. 
121
, pp. 
622
628
,
2016
, https://doi.org/10.1016/j.conbuildmat.2016.06.015
11.
Desmet
,
B.
,
Atitung
,
K. C.
,
Sanchez
,
M. A. A.
,
Vantomme
,
J.
,
Feys
,
D.
,
Robeyst
,
N.
,
Audenaert
,
K.
,
Schutter
,
G. D.
,
Boel
,
V.
,
Heirman
,
G.
,
Cizer
,
O.
,
Vandewalle
,
L.
, and
Gemert
,
D. V.
, “
Monitoring the Early-Age Hydration of Self-Compacting Concrete Using Ultrasonic P-Wave Transmission and Isothermal Calorimetry
,”
Mater. Struct.
, Vol. 
44
, pp. 
1537
1558
,
2011
, https://doi.org/10.1617/s11527-011-9717-x
12.
Robeyst
,
N.
,
Gruyaert
,
E.
,
Grosse
,
C. U.
, and
Belie
,
N. D.
, “
Monitoring the Setting of Concrete Containing Blast-Furnace Slag by Measuring the Ultrasonic P-Wave Velocity
,”
Cement Concrete Res.
, Vol. 
38
, No. 
10
, pp. 
1169
1176
,
2008
, https://doi.org/10.1016/j.cemconres.2008.04.006
13.
Carette
,
J.
and
Staquet
,
S.
, “
Monitoring the Setting Process of Mortars by Ultrasonic P- and S-Wave Transmission Velocity Measurement
,”
Constr. Build. Mater.
, Vol. 
94
, pp. 
196
208
,
2015
, https://doi.org/10.1016/j.conbuildmat.2015.06.054
14.
Carette
,
J.
and
Staquet
,
S.
, “
Monitoring the Setting Process of Eco-Binders by Ultrasonic P-Wave and S-Wave Transmission Velocity Measurement: Mortar vs Concrete
,”
Constr. Build. Mater.
, Vol. 
110
, pp. 
32
41
,
2016
, https://doi.org/10.1016/j.conbuildmat.2016.02.019
15.
ASTM C191-13
Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle
,
ASTM International
,
West Conshohocken, PA
,
2013
, www.astm.orghttps://doi.org/10.1520/C0191
16.
ASTM C266-15
Standard Test Method for Time of Setting of Hydraulic-Cement Paste by Gillmore Needles
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.orghttps://doi.org/10.1520/C0266-15
17.
Pinto
,
R.
and
Hover
,
K.
, “
Application of Maturity Approach to Setting Times
,”
ACI Mater. J.
, Vol. 
96
, No. 
6
, pp. 
686
691
,
1999
, https://doi.org/10.14359/795
18.
García
,
Á.
,
Castro-Fresno
,
D.
, and
Polanco
,
J.
, “
Maturity Approach Applied to Concrete by Means of Vicat Tests
,”
ACI Mater. J.
, Vol. 
105
, No. 
5
, pp. 
445
450
,
2008
, https://doi.org/10.14359/19973
19.
Schindler
,
A.
, “
Prediction of concrete setting
,” presented at the RILEM International Symposium on Advances in Concrete through Science and Engineering, Evanston, IL, March 21–24, 2004, RILEM, https://doi.org/10.1617/2912143926.002
20.
Freiesleben Hansen
,
P.
and
Pedersen
,
E. J.
Maturity Analysis by Computer for Controlled Curing and Hardening of Concrete
,”
Nord Betong
, No.
1
, pp. 
21
25
,
1977
.
21.
Carette
,
J.
and
Staquet
,
S.
, “
Monitoring and Modelling the Early Age and Hardening Behaviour of Eco-Concrete Through Continuous Non-Destructive Measurements: Part I. Hydration and Apparent Activation Energy
,”
Cem. Concr. Compos.
, Vol. 
73
, pp. 
10
18
,
2016
, https://doi.org/10.1016/j.cemconcomp.2016.07.002
22.
Zhu
,
J.
,
Kee
,
S.-H.
,
Han
,
D.
, and
Tsai
,
Y.-T.
, “
Effects of Air Voids on Ultrasonic Wave Propagation in Early Age Cement Pastes
,”
Cement Concrete Res.
, Vol. 
41
, No. 
8
, pp. 
872
881
,
2011
, https://doi.org/10.1016/j.cemconres.2011.04.005
23.
Voigt
,
T.
,
Grosse
,
C. U.
,
Sun
,
Z.
,
Shah
,
S. P.
, and
Reinhardt
,
H.-W.
, “
Comparison of Ultrasonic Wave Transmission and Reflection Measurements with P- and S-Waves on Early Age Mortar and Concrete
,”
Mater. Struct.
, Vol. 
38
, pp. 
729
738
,
2005
https://doi.org/10.1007/BF02479285
24.
Bentz
,
D. P.
,
Peltz
,
M. A.
, and
Winpigler
,
J.
, “
Early-Age Properties of Cement-Based Materials. II: Influence of Water-to-Cement Ratio
,”
J. Mater. Civ. Eng.
, Vol. 
21
, No. 
9
, pp. 
512
517
,
2009
, https://doi.org/10.1061/(ASCE)0899-1561(2009)21:9(512)
25.
Hu
,
J.
,
Ge
,
Z.
, and
Wang
,
K.
, “
Influence of Cement Fineness and Water-to-Cement Ratio on Mortar Early-Age Heat of Hydration and Set Times
,”
Constr. Build. Mater.
, Vol. 
50
, pp. 
657
663
,
2014
, https://doi.org/10.1016/j.conbuildmat.2013.10.011
26.
Baroghel-Bouny
,
V.
,
Mounanga
,
P.
,
Khelidj
,
A.
,
Loukili
,
A.
, and
Rafaï
,
N.
, “
Autogenous Deformations of Cement Pastes: Part II. W/C Effects, Micro–Macro Correlations, and Threshold Values
,”
Cement Concrete Res.
, Vol. 
36
, No. 
1
, pp. 
123
136
,
2006
, https://doi.org/10.1016/j.cemconres.2004.10.020
27.
Boumiz
,
A.
,
Vernet
,
C.
, and
Tenoudji
,
F.
, “
Mechanical Properties of Cement Pastes and Mortars at Early Ages
,”
Adv. Cem Based Mater.
, Vol. 
3
, No. 
3
, pp. 
94
106
,
1996
, https://doi.org/10.1016/S1065-7355(96)90042-5
28.
Bentz
D.
, “
Modeling the Influence of Limestone Filler on Cement Hydration Using CEMHYD3D
,”
Cem. Concr. Compos.
, Vol. 
28
, No. 
2
, pp. 
124
129
,
2006
, https://doi.org/10.1016/j.cemconcomp.2005.10.006
29.
Matschei
,
T.
,
Lothenbach
,
B.
, and
Glasser
,
F.
, “
The Role of Calcium Carbonate in Cement Hydration
,”
Cem. Concr. Res.
, Vol. 
37
, No. 
4
, pp. 
551
558
,
2005
, https://doi.org/10.1016/j.cemconres.2006.10.013
30.
van Breugel
,
K.
, “
Numerical Simulation of Hydration and Microstructural Development in Hardening Cement-Based Materials (I) Theory
,”
Cem. Concr. Res.
, Vol. 
25
, No. 
2
,
319
331
,
1995
, https://doi.org/10.1016/0008-8846(95)00017-8
31.
Trtnik
,
G.
,
Valic
,
M. I.
, and
Turk
,
G.
, “
Measurement of Setting Process of Cement Pastes Using Non-Destructive Ultrasonic Shear Wave Reflection Technique
,”
NDT & E International
, Vol. 
56
, pp. 
65
75
,
2013
, https://doi.org/10.1016/j.ndteint.2013.02.004
32.
Hu
,
J.
,
Ge
,
Z.
, and
Wang
,
K.
, “
Influence of Cement Fineness and Water-to-Cement Ratio on Mortar Early-Age Heat of Hydration and Set Times
”,
Constr. Build. Mater
., Vol. 
50
, pp. 
657
663
,
2014
, https://doi.org/10.1016/j.conbuildmat.2013.10.011
33.
Krüger
,
M.
,
Bregar
,
R.
,
David
,
G. A.
, and
Juhart
,
J.
, “
Non-Destructive Evaluation of Eco-Friendly Cementituous Materials By Ultrasound
”, International RILEM Conference on Materials, Systems and Structures in Civil Engineering,
2016
.
This content is only available via PDF.
You do not currently have access to this content.