Abstract

The electrical properties of Portland cement, and cements containing supplementary cementitious materials (SCM), were obtained over the frequency range 1 kHz–10 MHz during the initial 24 h after gauging with water. The response was measured in terms of conductivity and permittivity with both parameters exhibiting significant temporal changes during this period. It was also evident that while the conductivity increased only marginally with increasing frequency of applied electrical field, the permittivity decreased by several orders of magnitude over this frequency range. Moreover, certain features of the permittivity response, which are related to bulk polarization processes, only revealed themselves in the higher frequency range (100 kHz–1 MHz), and went undetected at lower frequencies. The detailed frequency- and time- domain measurements allowed identification of several stages in the early hydration of cement-based materials and the response can be interpreted in terms of hydration kinetics, physico-chemical processes and microstructural development. It is shown that the methodology can be equally applied to cement pastes and concretes.

References

1.
McCarter
,
W.J.
and
Curran
,
P.
, “
The Electrical Response of Setting Cement Paste
,”
Mag. Concrete Res.
, Vol. 
36
, No. 
126
,
1984
, pp. 
42
49
, https://doi.org/10.1680/macr.1984.36.126.42
2.
McCarter
,
W.J.
and
Afshar
,
A.B.
, “
Some Aspects of the Electrical Properties of Cement Paste
,”
J. Mater. Sci. Lett.
, Vol. 
3
, No. 
12
,
1984
, pp. 
1083
1086
, https://doi.org/10.1007/BF00719771
3.
McCarter
,
W.J.
and
Afshar
,
A.
, “
A Study of the Early Hydration of Portland Cement
,”
Proc. Inst. Civ. Eng. (London)
, No. 
79
,
1985
, pp. 
585
604
.
4.
Torrents
,
J.M.
,
Roncero
,
J.
, and
Gettu
,
R.
, “
Utilization of Impedance Spectroscopy for Studying the Retarding Effect of a Superplasticizer on the Setting of Cement
,”
Cement Concrete Res.
, Vol. 
28
, No. 
9
,
1998
, pp. 
1325
1333
, https://doi.org/10.1016/S0008-8846(98)00110-0
5.
Morsy
,
M.S.
, “
Effect of Temperature on Electrical Conductivity of Blended Cement Pastes
,”
Cement Concrete Res.
, Vol. 
29
, No. 
4
,
1999
, pp. 
603
606
, https://doi.org/10.1016/S0008-8846(98)00198-7
6.
Levita
,
G.
,
Marchetti
,
A.
,
Gallone
,
G.
,
Princigallo
,
A.
, and
Guerrini
,
G.L.
, “
Electrical Properties of Fluidified Portland Cement Mixes in the Early Stage of Hydration
,”
Cement Concrete Res.
, Vol. 
30
, No. 
6
,
2000
, pp. 
923
930
, https://doi.org/10.1016/S0008-8846(00)00282-9
7.
Salem
,
T.M.
, “
Electrical Conductivity and Rheological Properties of Ordinary Portland Cement–Silica Fume and Calcium Hydroxide–Silica Fume Pastes
,”
Cement Concrete Res.
, Vol. 
32
, No. 
9
,
2002
, pp. 
1473
1481
, https://doi.org/10.1016/S0008-8846(02)00809-8
8.
Princigallo
,
A.
,
van Breugel
,
K.
, and
Levita
,
G.
, “
Influence of the Aggregate on the Electrical Conductivity of Portland Cement Concretes
,”
Cement Concrete Res.
, Vol. 
33
, No. 
11
,
2003
, pp. 
1755
1763
, https://doi.org/10.1016/S0008-8846(03)00166-2
9.
Heikal
,
M.
,
Morsy
,
M.S.
, and
Radwan
,
M.M.
, “
Electrical Conductivity and Phase Composition of Calcium Aluminate Cement containing Air-Cooled and Water-Cooled Slag at 20, 40 and 60°C
,”
Cement Concrete Res.
, Vol. 
35
, No. 
7
,
2005
, pp. 
1438
1446
, https://doi.org/10.1016/j.cemconres.2004.09.027
10.
Wei
,
X.
and
Li
,
Z.
, “
Early Hydration Process of Portland Cement Paste by Electrical Measurement
,”
J. Mater. Civ. Eng.
, Vol. 
18
, No. 
1
,
2006
, pp. 
99
105
, https://doi.org/10.1061/(ASCE)0899-1561(2006)18:1(99)
11.
Rajabipour
,
F.
,
Sant
,
G.
, and
Weiss
,
J.
, “
Development of Electrical Conductivity-Based Sensors for Health Monitoring of Concrete Materials
,” Transportation Research Board,
Washington, DC
,
2007
, https://trid.trb.org/view.aspx?id=801858 (Last accessed 7 Nov 2016).
12.
Xiao
,
L.
and
Li
,
Z.
, “
Early-Age Hydration of Fresh Concrete Monitored by Non-Contact Electrical Resistivity Measurement
,”
Cement Concrete Res.
, Vol. 
38
, No. 
3
,
2008
, pp. 
312
319
, https://doi.org/10.1016/j.cemconres.2007.09.027
13.
Zhang
,
J.
,
Qin
,
L.
, and
Li
,
Z.
, “
Hydration and Monitoring of Cement-Based Materials With Resistivity and Ultrasonic Methods
,”
Mater. Struct.
, Vol. 
42
, No. 
1
,
2009
, pp. 
15
24
, https://doi.org/10.1617/s11527-008-9363-0
14.
Topçu
,
İ.B.
,
Uygunoğlu
,
T.
, and
Hocaoğlu
,
İ.
, “
Electrical Conductivity of Setting Cement Paste With Different Mineral Admixtures
,”
Constr. Build. Mater.
, Vol. 
28
, No. 
1
,
2012
, pp. 
414
420
, https://doi.org/10.1016/j.conbuildmat.2011.08.068
15.
Sanish
,
K.B.
,
Neithalath
,
N.
, and
Santhanam
,
M.
, “
Monitoring the Evolution of Material Structure in Cement Pastes and Concretes Using Electrical Property Measurements
,”
Constr. Build. Mater.
, Vol. 
49
, No. 
12
,
2013
, pp. 
288
297
, https://doi.org/10.1016/j.conbuildmat.2013.08.038
16.
Tang
,
S.W.
,
Cai
,
X.H.
,
He
,
Z.
,
Shao
,
H.Y.
,
Li
,
Z.J.
, and
Chen
,
E.
, “
Hydration Process of Fly Ash Blended Cement Pastes by Impedance Measurement
,”
Constr. Build. Mater.
, Vol. 
113
, No. 
15
,
2016
, pp. 
939
950
, https://doi.org/10.1016/j.conbuildmat.2016.03.141
17.
Gorur
,
K.
,
Smit
,
M.K.
, and
Wittmann
,
F.H.
, “
Microwave Study of Hydrating Cement Paste at Early Age
,”
Cement Concrete Res.
, Vol. 
12
, No. 
4
,
1982
, pp. 
447
454
, https://doi.org/10.1016/0008-8846(82)90059-X
18.
Moukwa
,
M.
,
Brodwin
,
M.
,
Christo
,
S.
,
Chang
,
J.
, and
Shah
,
S.P.
, “
The Influence of the Hydration Process Upon Microwave Properties of Cements
,”
Cement Concrete Res.
, Vol. 
21
, No. 
5
,
1991
, pp. 
863
872
, https://doi.org/10.1016/0008-8846(91)90181-G
19.
Zhang
,
X.
,
Ding
,
X.Z.
,
Ong
,
C.K.
,
Tan
,
B.T. G.
, and
Yang
,
J.
, “
Dielectric and Electrical Properties of Ordinary Portland Cement and Slag Cement in the Early Hydration Period
,”
J. Mater. Sci.
, Vol. 
31
, No. 
5
,
1996
, pp. 
1345
1352
, https://doi.org/10.1007/BF00353116
20.
Zhang
,
X.
,
Yang
,
Y.
, and
Ong
,
C.K.
, “
Correlation of Microwave and Conduction Calorimeter Measurements on the Hydration of Cement
,”
J. Mater. Sci. Lett.
, Vol. 
16
, No. 
23
,
1997
, pp. 
1885
1887
, https://doi.org/10.1023/A:1018514012309
21.
Smith
,
A.
,
Abélard
,
P.
,
Thummen
,
F.
, and
Allemand
,
A.
, “
Electrical Characterisation as a Function of Frequency: Application to Aluminous Cement During Early Hydration
,”
Cement Concrete Compos.
, Vol. 
24
, No. 
5
,
2002
, pp. 
477
484
, https://doi.org/10.1016/S0958-9465(01)00079-8
22.
EN197-1
Cement. Part 1: Composition, Specifications and Conformity Criteria for Common Cements
,
British Standards Institution
,
London
,
2000
.
23.
EN15167-1
Ground Granulated Blast Furnace Slag for Use in Concrete, Mortar and Grout. Part 1: Definitions, Specifications and Conformity Criteria
,
British Standards Institution
,
London
,
2006
.
24.
Schwan
,
H.P.
,
Schwarz
,
G.
,
Maczuk
,
J.
, and
Pauly
,
H.
, “
On the Low-Frequency Dielectric Dispersion of Colloidal Particles in Electrolyte Solution
,”
J. Phys. Chem.
, Vol. 
66
, No. 
12
,
1962
, pp. 
2626
2635
, https://doi.org/10.1021/j100818a066
25.
Schwarz
,
G.
, “
A Theory of the Low-Frequency Dielectric Dispersion of Colloidal Particles in Electrolyte Solution
,”
J. Phys. Chem.
, Vol. 
66
, No. 
12
,
1962
, pp. 
2636
2642
, https://doi.org/10.1021/j100818a067
26.
Hasted
,
J.B.
,
Aqueous Dielectrics
,
Chapman and Hall
,
London
,
1973
.
27.
McCarter
,
W.J.
and
Tran
,
D.
, “
Monitoring Pozzolanic Activity by Direct Activation With Calcium Hydroxide
,”
Constr. Build. Mater.
, Vol. 
10
, No. 
3
,
1996
, pp. 
179
184
, https://doi.org/10.1016/0950-0618(95)00089-5
28.
Whittington
,
H.W.
,
McCarter
,
J.
, and
Forde
,
M.C.
, “
The Conduction of Electricity Through Concrete
,”
Mag. Concrete Res.
, Vol. 
33
, No. 
114
,
1981
, pp. 
48
60
, https://doi.org/10.1680/macr.1981.33.114.48
29.
Bordi
,
F.
,
Cametti
,
C.
, and
Gili
,
T.
, “
Reduction of the Contribution of Electrode Polarization Effects in the Radiowave Dielectric Measurements of Highly Conductive Biological Cell Suspensions
,”
Bioelectrochemistry
, Vol. 
54
, No. 
1
,
2001
, pp. 
53
61
, https://doi.org/10.1016/S1567-5394(01)00110-4
30.
Ishai
,
P.B.
,
Talary
,
M.S.
,
Caduff
,
A.
,
Levy
,
E.
, and
Feldman
,
Y.
, “
Electrode Polarization in Dielectric Measurements: A Review
,”
Meas. Sci. Technol.
, Vol. 
24
, No. 
10
,
2013
, pp. 
1
21
.
31.
Serghei
,
A.
,
Tress
,
M.
,
Sangoro
,
J.R.
, and
Kremer
,
F.
, “
Electrode Polarization and Charge Transport at Solid Interfaces
,”
Phys. Rev. B
, Vol. 
80
, No. 
18
,
2009
, pp. 
1
5
, https://doi.org/10.1103/PhysRevB.80.184301
32.
Bazzoni
,
A.
,
Ma
,
S.
,
Wang
,
Q.
,
Shen
,
X.
,
Cantoni
,
M.
, and
Scrivener
,
K.L.
, “
The Effect of Magnesium and Zinc Ions on the Hydration Kinetics of C3S
,”
J. Am. Ceram. Soc.
, Vol. 
97
, No. 
11
,
2014
, pp. 
3684
3693
, https://doi.org/10.1111/jace.13156
33.
Sowoidnich
,
T.
, “
A Study of Retarding Effects on Cement and Tricalcium Silicate Hydration Induced by Superplasticizers
,” PhD thesis,
Bauhaus University
, Weimar, Germany,
2015
.
34.
Odler
,
I.
and
Wonnemann
,
R.
, “
Effect of Alkalies on Portland Cement Hydration. I: Alkali Oxides Incorporated into the Crystalline Lattice of Clinker Minerals
,”
Cement Concrete Res.
, Vol. 
13
, No. 
4
,
1983
, pp. 
477
482
, https://doi.org/10.1016/0008-8846(83)90005-4
35.
Gartner
,
E.M.
,
Young
,
J.F.
,
Damidot
,
D.A.
, and
Jawed
,
I.
, “Hydration of Portland Cement,”
Structure and Performance of Cements
, 2nd ed. Chap. 3,
Bensted
J.
and
Barnes
P.
, Eds.,
Spon
,
London
, 2002.
36.
Scrivener
,
K.L.
,
Juilland
,
P.
, and
Monteiro
,
P.J. M.
, “
Advances in Understanding Hydration of Portland Cement
,”
Cement Concrete Res.
, Vol. 
78
, No. 
12
,
2015
, pp. 
38
56
, https://doi.org/10.1016/j.cemconres.2015.05.025
37.
Chen
,
Y.
and
Or
,
D.
, “
Effects of Maxwell–Wagner Polarization on Soil Complex Dielectric Permittivity Under Variable Temperature and Electrical Conductivity
,”
Water Resour. Res.
, Vol. 
42
, No. 
6
,
2006
, pp. 
1
14
, https://doi.org/10.1029/2005WR004590
This content is only available via PDF.
You do not currently have access to this content.