Abstract

At early age, the autogenous strain and the coefficient of thermal expansion (CTE) are two of the most important concrete properties that are responsible for volume changes of cement-based materials and therefore for possible cracking in concrete structures (especially massive structures). Autogenous strain and CTE are dependent on the water/cement (W/C) ratio. A new experimental approach was developed to define both properties as well as the initial and final setting time with a single test. Every two hours, thermal variations of 3 °C are applied on a concrete sample with the device so-called BTJADE (from the French acronym BéTon au Jeune Age, Déformation Endogène). The initial setting time is the moment when the value of the CTE no longer corresponds to a liquid. The final setting time corresponds to a zero value of the derivative of the autogenous strain before the swelling of the concrete. Results of the initial and final setting time are compared to the evolution of the transmission of the ultrasound P- and S-waves. Three different compositions are investigated to define the influence of the W/C ratio (0.4, 0.5, and 0.6), and a fourth composition, for which the binder is composed of only 25 % cement, is also used in order to validate all observations. A new model expressed in function of the equivalent time or the advancement degree of reaction (defined with isothermal calorimetry) is proposed for computational modelling of the autogenous strain and the CTE. Effect of the W/C ratio and the physical mechanisms are highlighted.

References

1.
Wyrzykowski
,
M.
and
Lura
,
P.
, “
Moisture Dependence of Thermal Expansion in Cement-Based Materials at Early Ages
,”
Cem. Concr. Res.
, Vol. 
53
,
2013
, pp. 
25
35
, https://doi.org/10.1016/j.cemconres.2013.05.016
2.
Bjøntegaard
,
Ø.
,
Basis for and Practical Approaches to Stress Calculations and Crack Risk Estimation in Hardening Concrete Structures – State of the art
. COIN Project report No. 31,
2011
.
3.
Briffaut
,
M.
,
Benboudjema
,
F.
,
Torrenti
,
J.-M.
, and
Nahas
,
G.
, “
Effects of Early-Age Thermal Behaviour on Damage Risks in Massive Concrete Structures
,”
Eur. J. Environ. Civ. Eng.
, Vol. 
16
,
2012
, pp. 
589
605
, https://doi.org/10.1080/19648189.2012.668016
4.
Faria
,
R.
,
Azenha
,
M.
, and
Figueiras
,
J.A.
, “
Modelling of Concrete at Early Ages: Application to an Externally Restrained Slab
,”
Cem. Concr. Compos.
, Vol. 
28
, No. 
6
,
2006
, pp. 
572
585
, https://doi.org/10.1016/j.cemconcomp.2006.02.012
5.
De Schutter
,
G.
Finite Element Simulation of Thermal Cracking in Massive Hardening Concrete Elements Using Degree of Hydration Based Material Laws
,”
Comput. Struct.
, Vol. 
80
,
2002
, pp. 
2035
2042
, https://doi.org/10.1016/S0045-7949(02)00270-5
6.
Liu
,
X.
,
Jiang
,
W.
,
De Schutter
,
G.
,
Yuan
,
Y.
, and
Su
,
Q.
, “
Early-Age Behaviour of Precast Concrete Immersed Tunnel Based on Degree of Hydration Concept
,”
Struct. Concr.
, Vol. 
15
, No. 
1
,
2014
, pp. 
66
80
, https://doi.org/10.1002/suco.201300027
7.
Yuan
,
Y.
and
Wan
,
Z.
, “
Prediction of Cracking Within Early-Age Concrete Due to Thermal, Drying and Creep Behavior
,”
Cem. Concr. Res.
, Vol. 
32
, No. 
7
,
2002
, pp. 
1053
1059
, https://doi.org/10.1016/S0008-8846(02)00743-3
8.
Zreiki
,
J.
,
Bouchelaghem
,
F.
, and
Chaouche
,
M.
, “
Early-Age Behaviour of Concrete in Massive Structures, Experimentation and Modelling
,”
Nucl. Eng. Des.
, Vol. 
240
, No. 
10
,
2010
, pp. 
2643
2654
, https://doi.org/10.1016/j.nucengdes.2010.07.010
9.
Craeye
,
B.
,
De Schutter
,
G.
,
Van Humbeeck
,
H.
, and
Van Cotthem
,
A.
, “
Early Age Behaviour of Concrete Supercontainers for Radioactive Waste Disposal
,”
Nucl. Eng. Des.
, Vol. 
239
, No. 
1
,
2009
, pp. 
23
35
, https://doi.org/10.1016/j.nucengdes.2008.10.006
10.
Delsaute
,
B.
,
Boulay
,
C.
,
Granja
,
J.
,
Carette
,
J.
,
Azenha
,
M.
,
Dumoulin
,
C.
,
Karaiskos
,
G.
,
Deraemaeker
,
A.
, and
Staquet
,
S.
, “
Testing Concrete E-Modulus at Very Early Ages Through Several Techniques: An Inter-laboratory Comparison
,”
Strain
, Vol. 
52
, No. 
2
,
2016
, pp. 
91
109
, https://doi.org/10.1111/str.12172
11.
Delsaute
,
B.
,
Boulay
,
C.
, and
Staquet
,
S.
, “
Creep Testing of Concrete Since Setting Time by Means of Permanent and Repeated Minute-Long Loadings
,”
Cem. Concr. Compos.
, Vol. 
73
,
2016
, pp. 
75
88
, https://doi.org/10.1016/j.cemconcomp.2016.07.005
12.
Bouasker
,
M.
,
Mounanga
,
P.
,
Turcry
,
P.
,
Loukili
,
A.
, and
Khelidj
,
A.
, “
Chemical Shrinkage of Cement Pastes and Mortars at Very Early Age: Effect of Limestone Filler and Granular Inclusions
,”
Cem. Concr. Compos.
, Vol. 
30
, No. 
1
,
2008
, pp. 
13
22
, https://doi.org/10.1016/j.cemconcomp.2007.06.004
13.
Bjøntegaard
,
Ø.
,
Hammer
,
T.
, and
Sellevold
,
E.J.
, “
On the Measurement of Free Deformation of Early Age Cement Paste and Concrete
,”
Cem. Concr. Compos.
, Vol. 
26
, No. 
5
,
2004
, pp. 
427
435
, https://doi.org/10.1016/S0958-9465(03)00065-9
14.
Cortas
,
R.
,
Rozière
,
E.
,
Staquet
,
S.
,
Hamami
,
A.
,
Loukili
,
A.
, and
Delplancke-Ogletree
,
M.-P.
, “
Effect of the Water Saturation of Aggregates on the Shrinkage Induced Cracking Risk of Concrete at Early Age
,”
Cem. Concr. Compos.
, Vol. 
50
,
2014
, pp. 
1
9
, https://doi.org/10.1016/j.cemconcomp.2014.02.006
15.
Baroghel-Bouny
,
V.
,
Mounanga
,
P.
,
Khelidj
,
A.
,
Loukili
,
A.
, and
Rafaï
,
N.
, “
Autogenous Deformations of Cement Pastes
,”
Cem. Concr. Res.
Vol. 
36
, No. 
1
,
2006
, pp. 
123
136
, https://doi.org/10.1016/j.cemconres.2004.10.020
16.
Sant
,
G.
,
Lothenbach
,
B.
,
Juilland
,
P.
,
Le Saout
,
G.
,
Weiss
,
J.
, and
Scrivener
,
K.
, “
The Origin of Early Age Expansions Induced in Cementitious Materials Containing Shrinkage Reducing Admixtures
,”
Cem. Concr. Res.
, Vol. 
41
, No. 
3
,
2011
, pp. 
218
229
, https://doi.org/10.1016/j.cemconres.2010.12.004
17.
Mehta
,
P.K.
, “
Mechanism of Expansion Associated with Ettringite Formation
,”
Cem. Concr. Res.
, Vol. 
3
, No. 
1
,
1973
, pp. 
1
6
, https://doi.org/10.1016/0008-8846(73)90056-2
18.
Min
,
D.
and
Mingshu
,
T.
, “
Formation and Expansion of Ettringite Crystals
,”
Cem. Concr. Res.
, Vol. 
24
, No. 
1
,
1994
, pp. 
119
126
, https://doi.org/10.1016/0008-8846(94)90092-2
19.
Odler
,
I.
and
Colán-Subauste
,
J.
, “
Investigations on Cement Expansion Associated with Ettringite Formation
,”
Cem. Concr. Res.
, Vol. 
29
, No. 
5
,
1999
, pp. 
731
735
, https://doi.org/10.1016/S0008-8846(99)00048-4
20.
Chaunsali
,
P.
and
Mondal
,
P.
, “
Physico-Chemical Interaction Between Mineral Admixtures and OPC–Calcium Sulfoaluminate (CSA) Cements and Its Influence on Early-Age Expansion
,”
Cem. Concr. Res.
, Vol. 
80
,
2016
, pp. 
10
20
, https://doi.org/10.1016/j.cemconres.2015.11.003
21.
Roziere
,
E.
,
Delsaute
,
B.
,
Loukili
,
A.
, and
Staquet
,
S.
, “
Experimental Assessment of Autogenous Shrinkage
,” presented at
CONCREEP 10
, Vienna, Austria, September 21–23, 2015, pp. 
983
992
.
22.
Barcelo
,
L.
,
Moranville
,
M.
, and
Clavaud
,
B.
, “
Autogenous Shrinkage of Concrete: A Balance Between Autogenous Swelling and Self-Desiccation
,”
Cem. Concr. Res.
Vol. 
35
, No. 
1
,
2005
, pp. 
177
183
, https://doi.org/10.1016/j.cemconres.2004.05.050
23.
Baroghel-Bouny
,
V.
,
1994
, “
Caractérisation des Pâtes de Ciment et des Bétons, Méthodes, Analyse, Interprétation
,” Ph.D. thesis,
Ecole Nationale des Ponts et Chaussées
, Marne-la-Vallée, France.
24.
Persson
,
B.
, “
Consequence of Cement Constituents, Mix Composition and Curing Conditions for Self-desiccation in Concrete
,”
Mater. Struct.
, Vol. 
33
, No. 
6
,
2000
, pp. 
352
362
, https://doi.org/10.1007/BF02479644
25.
Van Breugel
,
K.
,
1991
, “
Simulation of Hydration and Formation of Structure in Hardening Cement-based Materials
,” Ph.D. Thesis,
Delft University of Technology
, Delft, Netherlands.
26.
Darquennes
,
A.
,
Staquet
,
S.
,
Delplancke-Ogletree
,
M.-P.
, and
Espion
,
B.
, “
Effect of Autogenous Deformation on the Cracking Risk of Slag Cement Concretes
,”
Cem. Concr. Compos.
Vol. 
33
, No. 
3
,
2011
, pp. 
368
379
, https://doi.org/10.1016/j.cemconcomp.2010.12.003
27.
Aly
,
T.
and
Sanjayan
,
J.G.
, “
Shrinkage Cracking Properties of Slag Concretes with One-Day Curing
,”
Mag. Concr. Res.
, Vol. 
60
, No. 
1
,
2008
, pp. 
41
48
, https://doi.org/10.1680/macr.2007.00038
28.
Holt
,
E.
, “
Contribution of Mixture Design to Chemical and Autogenous Shrinkage of Concrete at Early Ages
,”
Cem. Concr. Res.
, Vol. 
35
, No. 
3
,
2005
, pp. 
464
472
, https://doi.org/10.1016/j.cemconres.2004.05.009
29.
Lopes
,
A.N. M.
,
Silva
,
E.F.
,
Dal Molin
,
D.C. C.
, and
Filho
,
R.D. T.
, “
Shrinkage-Reducing Admixture: Effects on Durability of High-Strength Concrete
,”
ACI Mater. J.
, Vol. 
110
, No. 
4
,
2013
, pp. 
365
374
.
30.
Wei
,
Y.
,
Hansen
,
W.
,
Biernacki
,
J.J.
, and
Schlangen
,
E.
, “
Unified Shrinkage Model for Concrete from Autogenous Shrinkage Test on Paste with and Without Ground-Granulated Blast-Furnace Slag
,”
ACI Mater. J.
, Vol. 
108
, No. 
1
,
2011
, pp. 
13
20
.
31.
Liu
,
Z.
and
Hansen
,
W.
, “
Aggregate and Slag Cement Effects on Autogenous Shrinkage in Cementitious Materials
,”
Constr. Build. Mater.
, Vol. 
121
,
2016
, pp. 
429
436
, https://doi.org/10.1016/j.conbuildmat.2016.06.012
32.
Zhuang
,
Y.
,
Zheng
,
D.
,
Ng
,
Z.
,
Ji
,
T.
, and
Chen
,
X.
, “
Effect of Lightweight Aggregate Type on Early-Age Autogenous Shrinkage of Concrete
,”
Constr. Build. Mater.
, Vol. 
120
,
2016
, pp. 
373
381
, https://doi.org/10.1016/j.conbuildmat.2016.05.105
33.
Maruyama
,
I.
and
Teramoto
,
A.
, “
Impact of Time-Dependant Thermal Expansion Coefficient on the Early-Age Volume Changes in Cement Pastes
,”
Cem. Concr. Res.
, Vol. 
41
, No. 
4
,
2011
, pp. 
380
391
, https://doi.org/10.1016/j.cemconres.2011.01.003
34.
Jensen
,
O.M.
and
Hansen
,
P.F.
, “
Influence of Temperature on Autogenous Deformation and Relative Humidity Change in Hardening Cement Paste
,”
Cem. Concr. Res.
, Vol. 
29
, No. 
4
,
1999
, pp. 
567
575
, https://doi.org/10.1016/S0008-8846(99)00021-6
35.
Task Group 8.7 Code-type Models for Structural Behaviour of Concrete: Background of the Constitutive Relations and Material Models in the fib Model Code for Concrete Structures 2010, fib Bull. No. 70,
2013
.
36.
Siddiqui
,
M.S.
and
Fowler
,
D.W.
, “
Optimizing Coefficient of Thermal Expansion of Concrete and Its Importance on Concrete Structures
,”
Constr. Mater. Struct.
,
2014
, pp. 
47
56
, https://doi.org/10.3233/978-1-61499-466-4-47
37.
Siddiqui
,
M.S.
and
Fowler
,
D.W.
, “
Effect of Internal Water Pressure on the Measured Coefficient of Thermal Expansion of Concrete
,”
J. Mater. Civ. Eng.
, Vol. 
27
, No. 
4
,
2015
, 4014151, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001095
38.
Sellevold
,
E.J.
and
Bjøntegaard
,
Ø.
, “
Coefficient of Thermal Expansion of Cement Paste and Concrete: Mechanisms of Moisture Interaction
,”
Mater. Struct.
Vol. 
39
, No. 
9
,
2006
, pp. 
809
815
, https://doi.org/10.1617/s11527-006-9086-z
39.
Boulay
,
C.
, “Determination of the Coefficient of Thermal Expansion,”
Early Age Crack. Cem. Syst. - Rep. RILEM Tech. Comm. 181-EAS - Early Age Shrinkage Induc. Stress. Crack. Cem. Syst.
,
Bentur
A.
, Ed.,
RILEM Publications SARL
,
2003
, pp. 
217
224
.
40.
Mitani
,
H.
,
2003
, “
Variations Volumiques des Matrices Cimentaires aux Très Jeunes Âges: Approche Expérimentale des Aspects Physiques et Microstructuraux
,” Ph.D. thesis,
Ecole Nationale des Ponts et Chaussées
, Marne-la-Vallée, France.
41.
Lura
,
P.
and
Durand
,
F.
, “
Volume Changes of Hardening Concrete : Testing and Mitigation
,” presented at the
International RILEM Conference on Volume Changes of Hardening Concrete: Testing and Mitigation
,
Jensen
O.M.
,
Lura
P.
,
Kovler
K.
, Eds., Concrete, Lyngby, Denmark, August 20–23, 2006, pp. 
57
65
.
42.
Le Roy
,
R.
,
1995
, “
Déformations Instantanées et Différées des Bétons à Hautes Performances
,” Ph.D. thesis,
Ecole Nationale des Ponts et Chaussées
, Paris, France.
43.
Laplante
,
P.
and
Boulay
,
C.
, “
Evolution du coefficient de dilatation thermique du béton en fonction de sa maturité aux tout premiers âges
,”
Mater. Struct.
Vol. 
27
, No. 
174
,
1994
, pp. 
596
605
, https://doi.org/10.1007/BF02473129
44.
Zhutovsky
,
S.
and
Kovler
,
K.
, “
Application of Ultrasonic Pulse Velocity for Assessment of Thermal Expansion Coefficient of Concrete at Early Age
,”
Mater. Struct.
Vol. 
50
, No. 
5
,
2017
, https://doi.org/10.1617/s11527-016-0866-9
45.
Instruments
T.
, “
Tam air isothermal calorimetry
,”
2017
, http://www.tainstruments.com/pdf/brochure/TAM AIR brochure.pdf (accessed 14 Feb. 2017).
46.
Carette
,
J.
and
Staquet
,
S.
, “
Monitoring and Modelling the Early Age and Hardening Behaviour of Eco-Concrete Through Continuous Non-Destructive Measurements: Part I. Hydration and Apparent Activation Energy
,”
Cem. Concr. Compos.
Vol. 
73
,
2016
, pp. 
10
18
, https://doi.org/10.1016/j.cemconcomp.2016.07.002
47.
Carette
,
J.
and
Staquet
,
S.
, “
Monitoring the Setting Process of Eco-Binders by Ultrasonic P-Wave and S-Wave Transmission Velocity Measurement: Mortar vs Concrete
,”
Constr. Build. Mater.
Vol. 
110
,
2016
, pp. 
32
41
, https://doi.org/10.1016/j.conbuildmat.2016.02.019
48.
Carette
,
J.
and
Staquet
,
S.
, “
Monitoring the Setting Process of Mortars by Ultrasonic P and S-wave Transmission Velocity Measurement
,”
Constr. Build. Mater.
, Vol. 
94
,
2015
, pp. 
196
208
, https://doi.org/10.1016/j.conbuildmat.2015.06.054
49.
ASTM C403
Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance
,
ASTM International
,
West Conshohocken, PA
,
2008
, www.astm.org, https://doi.org/10.1520/C0403_C0403M-08
50.
Boulay
,
C.
, “
Test Rig for Early Age Measurements of the Autogenous Shrinkage of a Concrete
,” presented at the
RILEM-JCJ Int. Work. ConCrack 3
, Paris, France, March 15–16, 2012, pp. 
111
122
.
51.
De Schutter
,
G.
and
Taerwe
,
L.
, “
Specific Heat and Thermal Diffusivity of Hardening Concrete
,”
Mag. Concr. Res.
, Vol. 
47
, No. 
172
,
1995
, pp. 
203
208
, https://doi.org/10.1680/macr.1995.47.172.203
52.
Ozawa
,
M.
and
Morimoto
,
H.
, “
Estimation Method for Thermal Expansion Coefficient of Concrete at Early Ages
,”
Int. RILEM Conf. Vol. Chang. Hardening Concr. Test. Mitig.
,
2006
, pp. 
331
339
, https://doi.org/10.1617/2351580052.035
53.
Maruyama
,
I.
,
Teramoto
,
A.
, and
Igarashi
,
G.
, “
Strain and Thermal Expansion Coefficients of Various Cement Pastes During Hydration at Early Ages
,”
Mater. Struct.
, Vol. 
47
, No. 
1
,
2014
, pp. 
27
37
, https://doi.org/10.1617/s11527-013-0042-4
54.
De Schutter
,
G.
and
Taerwe
,
L.
, “
Degree of Hydration-Based Description of Mechanical Properties of Early Age Concrete
,”
Mater. Struct.
, Vol. 
29
,
1996
, pp. 
335
344
, https://doi.org/10.1007/BF02486341
55.
Wendner
,
R.
,
Hubler
,
M.H.
, and
Bažant
,
Z.P.
, “The B4 Model for Multi-Decade Creep and Shrinkage Prediction,”
Mech. Phys. Creep, Shrinkage, Durab. Concr.
,
American Society of Civil Engineers
,
Reston, VA
,
2013
, pp. 
429
436
. https://doi.org/10.1061/9780784413111.051
56.
Benboudjema
,
F.
and
Torrenti
,
J.M.
, “
Early-Age Behaviour of Concrete Nuclear Containments
,”
Nucl. Eng. Des.
, Vol. 
238
, No. 
10
,
2008
, pp. 
2495
2506
, https://doi.org/10.1016/j.nucengdes.2008.04.009
57.
Darquennes
,
A.
and
Benboudjema
,
F.
, “
Analyse de la sensibilité à la fissuration au jeune âge en conditions endogènes des matériaux cimentaires avec laitier de haut-fourneau
,”
Regroupement Francoph. Pour La Rech. La Form. Sur Le Bét.
,
Lyon
,
2012
.
58.
Sant
,
G.
,
Lura
,
P.
, and
Weiss
,
J.
, “
A Discussion of Analysis Approaches for Determining” Time-Zero” from Chemical Shrinkage and Autogenous Strain Measurements in Cement Paste
,”
Int. RILEM Conf. Vol. Chang. Hardening Concr. Test. Mitig.
, Lyngby,
2006
, pp. 
375
383
, http://www.rilem.net/gene/main.php?base=500218&id_publication=57&id_papier=2271.
59.
Loser
,
R.
,
Münch
,
B.
, and
Lura
,
P.
, “
A Volumetric Technique for Measuring the Coefficient of Thermal Expansion of Hardening Cement Paste and Mortar
,”
Cem. Concr. Res.
, Vol. 
40
, No. 
7
,
2010
, pp. 
1138
1147
, https://doi.org/10.1016/j.cemconres.2010.03.021
60.
Wyrzykowski
,
M.
and
Lura
,
P.
, “
Controlling the Coefficient of Thermal Expansion of Cementitious Materials - A New Application for Superabsorbent Polymers
,”
Cem. Concr. Compos.
, Vol. 
35
, No. 
1
,
2013
, pp. 
49
58
, https://doi.org/10.1016/j.cemconcomp.2012.08.010
61.
Cusson
,
D.
and
Hoogeveen
,
T.
, “
Measuring Early-Age Coefficient of Thermal Expansion in High-Performance Concrete
,”
Int. Rilem Conf.
,
2006
, pp. 
321
330
, https://doi.org/10.1617/2351580052.034
62.
Cusson
,
D.
and
Hoogeveen
,
T.
, “
An Experimental Approach for the Analysis of Early-Age Behaviour of High-Performance Concrete Structures Under Restrained Shrinkage
,”
Cem. Concr. Res.
Vol. 
37
, No. 
2
,
2007
, pp. 
200
209
, https://doi.org/10.1016/j.cemconres.2006.11.005
63.
Bjøntegård
,
Ø.
, and
Sellevold
,
E.J.
, “
Interaction Between Thermal Dilation and Autogenous Deformation in High Performance Concrete
,”
Mater. Struct.
Vol. 
34
, No. 
5
,
2001
, pp. 
266
272
, https://doi.org/10.1617/13731
This content is only available via PDF.
You do not currently have access to this content.