Abstract

Self-compacting concrete (SCC) is a high-performance concrete that is increasingly replacing conventional concrete because of its many advantages. SCC is prepared with chemical and mineral admixtures to achieve increased flowability. These admixtures modify the microstructural characteristics of SCC, which in turn affect the mechanical and fracture properties of concrete. In this study, an attempt has been made to establish the relationship between the microstructure and fracture properties of SCC mixes. The fracture properties are studied by using the RILEM work of fracture method, Bazant’s size effect, and the Wittman boundary effect models. Microstructural characterization has been carried out using X-ray diffraction, scanning electron microscopy (SEM), and microindentation techniques. It is revealed that the presence of mineral admixtures alter the microstructural skeleton of SCC, which in turn increase its brittleness. However, it is also found that the reason for brittleness is not because of cracking through aggregates as is reported in many literature regarding high-strength concrete; on the contrary, the cracks are passing through the interfacial transition zone or matrix in all SCC mixes, as is revealed by SEM images. Furthermore, it is found that the mechanical properties of the aggregate used have a significant influence on the fracture properties of the mixes.

References

1.
Shah
,
S.
,
Swartz
,
S.
, and
Ouyang
,
C.
,
Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and Other Quasi-Brittle Materials
,
John Wiley & Sons Inc.
,
New York, NY
,
1995
, p. 588.
2.
Landis
,
E.N.
and
Bolander
,
J.E.
, “
Explicit Representation of Physical Processes in Concrete Fracture
,”
J. Phys. D: Appl. Phys.
, Vol. 
42
, No. 
21
,
2009
, pp. 
1
17
.
3.
Zhu
,
W.
and
Bartos
,
P.J.
, “
Microstructure and Properties of Interfacial Transition Zone in SCC
,” presented at the
First International Symposium on Design Performance and Use of Self Consolidating Concrete
, Changsha, Hunan, China, May 26–28,
2005
,
RILEM Publications SARL
,
Paris, France
, pp. 
319
327
.
4.
Wu
,
K.R.
,
Chen
,
B.
,
Yao
,
W.
, and
Zhang
,
D.
, “
Effect of Coarse Aggregate Type on Mechanical Properties of High-Performance Concrete
,”
Cem. Concr. Res.
, Vol. 
31
, No. 
10
,
2001
, pp. 
1421
1425
, https://doi.org/10.1016/S0008-8846(01)00588-9
5.
Gettu
,
R.
,
Bazant
,
Z.
, and
Karr
,
M.
, “
Fracture Properties and Brittleness of High-Strength Concrete
,”
ACI Mater. J.
, Vol. 
87
, No. 
6
,
1990
, pp. 
608
618
.
6.
Dong
,
Z.
and
Keru
,
W.
, “
Fracture Properties of High-Strength Concrete
,”
J. Mater. Civ. Eng.
, Vol. 
13
, No. 
1
,
2001
, pp. 
86
88
, https://doi.org/10.1061/(ASCE)0899-1561(2001)13:1(86)
7.
Giaccio
,
G.
,
Rocco
,
C.
, and
Zerbino
,
R.
, “
The Fracture Energy (GF) of High Strength Concretes
,”
Mater. Struct.
, Vol. 
26
, No. 
7
,
1993
, pp. 
381
386
, https://doi.org/10.1007/BF02472938
8.
Zhou
,
F.P.
,
Barr
,
B.I. G.
, and
Lydon
,
F.B.
, “
Fracture Properties of High Strength Concrete with Varying Silica Fume Content and Aggregates
,”
Cem. Concr. Res.
, Vol. 
25
, No. 
3
,
1995
, pp. 
543
552
, https://doi.org/10.1016/0008-8846(95)00043-C
9.
Murthy
,
A.R.
,
Karihaloo
,
B.L.
, and
Iyer
,
N.R.
, “
Determination of Size-Independent Specific Fracture Energy of Concrete Mixes by Two Methods
,”
Cem. Concr. Res.
, Vol. 
50
,
2013
, pp. 
19
25
, https://doi.org/10.1016/j.cemconres.2013.03.015
10.
Yang
,
S.T.
,
Hu
,
X.Z.
, and
Wu
,
Z.M.
, “
Influence of Local Fracture Energy Distribution on Maximum Fracture Load of Three-Point-Bending Notched Concrete Beams
,”
Eng. Fract. Mech.
, Vol. 
78
, No. 
18
,
2011
, pp. 
3289
3299
, https://doi.org/10.1016/j.engfracmech.2011.09.019
11.
Cifuentes
,
H.
and
Karihaloo
,
B.L.
, “
Determination of Size-Independent Specific Fracture Energy of Normal- and High-Strength Self-Compacting Concrete from Wedge Splitting Tests
,”
Constr. Build. Mater.
, Vol. 
48
,
2013
, pp. 
548
553
, https://doi.org/10.1016/j.conbuildmat.2013.07.062
12.
Nikbin
,
I.M.
,
Davoodi
,
M.R.
,
Fallahnejad
,
H.
,
Rahimi
,
S.
, and
Farahbod
,
F.
, “
Influence of Mineral Powder Content on the Fracture Behaviors and Ductility of Self-Compacting Concrete
,”
J. Mater. Civ. Eng.
, Vol. 
28
, No., 3,
2016
, pp. 
04015147-1
04015147-14
.
13.
Aslani
,
F.
, “
Effects of Specimen Size and Shape on Compressive and Tensile Strengths of Self-Compacting Concrete With or Without Fibres
,”
Mag. Concr. Res.
, Vol. 
65
, No. 
15
,
2013
, pp. 
914
929
, https://doi.org/10.1680/macr.13.00016
14.
Aslani
,
F.
and
Samali
,
B.
, “
Flexural Toughness Characteristics of Self-Compacting Concrete Incorporating Steel and Polypropylene Fibres
,”
Aust. J. Struct. Eng.
, Vol. 
15
, No. 
3
,
2014
, pp. 
269
286
.
15.
Aslani
,
F.
and
Nejadi
,
S.
, “
Self–Compacting Concrete Incorporating Steel and Polypropylene Fibers: Compressive and Tensile Strengths, Moduli of Elasticity and Rupture, Compressive Stress-Strain Curve, and Energy Dissipated under Compression
,”
Composites Part B
, Vol. 
53
,
2013
, pp. 
121
133
, https://doi.org/10.1016/j.compositesb.2013.04.044
16.
Aslani
,
F.
and
Bastami
,
M.
, “
Relationship between Deflection and Crack Mouth Opening Displacement of Self-Compacting Concrete Beams With and Without Fibers
,”
Mech. Adv. Mater.
Struct., Vol. 
22
, No. 
11
,
2015
, pp. 
956
967
, https://doi.org/10.1080/15376494.2014.906689
17.
Aslani
,
F.
and
Nejadi
.
S.
, “
Mechanical Properties of Conventional and Self-Compacting Concrete: An Analytical Study
,”
Constr. Build. Mater.
, Vol. 
36
,
2012
, pp. 
330
347
, https://doi.org/10.1016/j.conbuildmat.2012.04.034
18.
Amparano
,
F.E.
,
Xi
,
Y.
, and
Roh
,
Y.S.
, “
Experimental Study on the Effect of Aggregate Content on Fracture Behaviour of Concrete
,”
Eng. Fract. Mech.
, Vol. 
67
, No. 
1
,
2000
, pp. 
65
84
, https://doi.org/10.1016/S0013-7944(00)00036-9
19.
Nikbin
,
I.
,
Beygi
,
M.
,
Kazemi
,
M.
,
Amiri
,
J.V.
,
Rahmani
,
E.
,
Rabbanifar
,
S.
, and
Eslami
,
M.
, “
Effect of Coarse Aggregate Volume on Fracture Behavior of Self Compacting Concrete
,”
Constr. Build. Mater.
, Vol. 
52
,
2014
, pp. 
137
145
, https://doi.org/10.1016/j.conbuildmat.2013.11.041
20.
Tasdemir
,
C.
,
Tasdemir
,
M.A.
,
Lydon
,
F.D.
, and
Barr
,
B.I. G.
, “
Effects of Silica Fume and Aggregate Size on the Brittleness of Concrete
,”
Cem. Concr. Res.
, Vol. 
26
, No. 
1
,
1996
, pp. 
63
68
, https://doi.org/10.1016/0008-8846(95)00180-8
21.
Tasdemir
,
C.
,
Tasdemir
,
M.A.
,
Mills
,
N.
,
Barr
,
B.
, and
Lydon
,
F.
, “
Combined Effects of Silica Fume, Aggregate Type, and Size on Post-Peak Response of Concrete in Bending
,”
ACI Mater. J.
, Vol. 
96
, No. 
1
.
1999
, pp. 
74
83
.
22.
Yan
,
A.
,
Wu
,
K.
,
Zhang
,
D.
, and
Yao
,
W.
, “
Effect of Fracture Path on the Fracture Energy of High-Strength Concrete
,”
Cem. Concr. Res.
, Vol. 
31
, No. 
11
,
2001
, pp. 
1601
1606
, https://doi.org/10.1016/S0008-8846(01)00610-X
23.
Zhang
,
M.
, “
Microstructure, Crack Propagation, and Mechanical Properties of Cement Pastes Containing High Volumes of Fly Ashes
,”
Cem. Concr. Res.
, Vol. 
25
, No. 
6
,
1995
, pp. 
1165
1178
, https://doi.org/10.1016/0008-8846(95)00109-P
24.
Hemalatha
,
T.
,
Ramaswamy
,
A.
, and
Chandra Kishen
,
J.M.
, “
Simplified Mixture Design for Production of Self-Consolidating Concrete
,”
ACI Mater. J.
, Vol. 
112
, No. 
2
,
2015
, pp. 
277
285
.
25.
Hemalatha
,
T.
,
Ramaswamy
,
A.
, and
Chandra Kishen
,
J.M.
, “
Micromechanical Analysis of Self Compacting Concrete
,”
Mater. Struct.
, Vol. 
48
, No. 
11
,
2015
, pp. 
3719
3734
, https://doi.org/10.1617/s11527-014-0435-z
26.
IS:12269-1987
Specification for 53 Grade Ordinary Portland Cement
,
Bureau of Indian Standards
,
New Delhi, Delhi, India
,
1987
, pp. 
1
26
.
27.
ASTM C618-08a
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
,
ASTM International
,
West Conshohocken, PA
,
2008
, www.astm.org
28.
ASTM C1240-05
Standard Specification for Silica Fume Used in Cementitious Mixtures
,
ASTM International
,
West Conshohocken, PA
,
2005
, www.astm.org
29.
EFNARC
The European Guidelines for Self-Compacting Concrete Specification, Production and Use
,
Self-Compating Concrete European Project Group
,
2005
, pp. 
1
63
, www.efnarc.org
30.
Ouchi
,
M.
, “Self-Compactability of Fresh Concrete, presented at the
First International Symposium on Design, Performance and Use of Self-Consolidating Concrete (SCC’2005-China)
,
Z.
Yu
,
C.
Shi
,
K. H.
Khayat
, and
Y.
Xie
, Eds.,
RILEM Publications SARL
,
Paris, France
,
2005
, pp. 
65
73
.
31.
Ozawa
,
K.
and
Ouchi
,
M.
,
Proceedings of the International Workshop On Self-compacting Concrete
,
Japan Society of Civil Engineers
,
Tokyo, Japan
,
1998
.
32.
ASTM C496 / C496M-11
Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens
,
ASTM International
,
West Conshohocken, PA
,
2004
, www.astm.org
33.
ASTM C469 / C469M-10
Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression
,
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org
34.
RILEM Technical Committee 50-FMC (Draft Reccomendation) “
Determination of the Fracture Energy of Mortar and Concrete by Means of Three-Point Bend Tests on Notched Beams
,”
Mater. Struct.
, Vol. 
18
No. 
106
,
1985
, pp. 
285
290
.
35.
Hu
,
X.
and
Wittmann
,
F.
, “
Fracture Energy and Fracture Process Zone
,”
Mater. Struct.
, Vol. 
25
, No. 
6
,
1992
, pp. 
319
326
, https://doi.org/10.1007/BF02472590
36.
Duan
,
K.
,
Hu
,
X.
, and
Wittmann
,
F.
, “
Explanation of Size Effect in Concrete Fracture Using Non-Uniform Energy Distribution
,”
Mater. Struct.
, Vol. 
35
,
2002
, pp. 
326
331
, https://doi.org/10.1617/13715
37.
Duan
,
K.
,
Hu
,
X.Z.
, and
Wittmann
,
F.
, “
Thickness Effect on Fracture Energy of Cementitious Materials
,”
Cem. Concr. Res.
, Vol. 
33
, No. 
4
,
2003
, pp. 
499
507
, https://doi.org/10.1016/S0008-8846(02)00997-3
38.
Duan
,
K.
,
Hu
,
X.Z.
, and
Wittmann
,
F.
, “
Size Effect on Specific Fracture Energy of Concrete
,”
Eng. Fract. Mech.
, Vol. 
74
, Nos. 1–2,
2007
, pp. 
87
96
.
39.
Trunk
,
B.
and
Wittmann
,
F.
, “
Influence of Size on Fracture Energy of Concrete
,”
Mater. Struct.
, Vol. 
34
, No. 
5
,
2001
, pp. 
260
265
, https://doi.org/10.1007/BF02482204
40.
Hemalatha
,
T.
,
Murthy
,
A.R.
, and
Iyer
,
N.R.
, “
Determination of the Back Boundary Effect on Self-Compacting Concrete Beams: Bilinear and Trilinear Approaches
,”
Int. J. Fract.
, Vol. 
193
, No. 
1
,
2015
, pp. 
17
28
, https://doi.org/10.1007/s10704-015-0011-8
41.
Shah
,
S.
and
Carpinteri
,
A.
, Eds.,
Fracture Mechanics Test Methods for Concrete
,
CRC Press
,
Boca Raton, FL
,
1991
, p. 300.
42.
Bažant
,
Z.
, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
J. Eng. Mech.
, Vol. 
110
, No. 
4
,
1984
, pp. 
518
535
, https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)
43.
Bažant
,
Z.
and
Planas
,
J.
, “Determination of Fracture Properties from Size Effect,”
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
,
Boca Raton, FL
,
1998
, p. 616.
44.
Bažant
,
Z.
and
Kazemi
,
M.
, “
Determination of Fracture Energy, Process Zone Length and Brittleness Number from Size Effect, with Application to Rock and Concrete
,”
Int. J. Fract.
, Vol. 
44
, No. 
2
,
1990
, pp. 
111
131
, https://doi.org/10.1007/BF00047063
45.
Bažant
,
Z.
,
Gettu
,
R.
, and
Kazemi
,
M.
, “
Identification of Nonlinear-Fracture Properties from Size Effect Tests and Structural Analysis Based on Geometry-Dependent R-Curves
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
, Vol. 
28
, No. 
1
,
1991
, pp. 
43
51
, https://doi.org/10.1016/0148-9062(91)93232-U
46.
Bažant
,
Z.
and
Kazemi
,
M.
, “
Size Effect in Fracture of Ceramics and Its Use to Determine Fracture Energy and Effective Process Zone Length
,”
J. Am. Ceram. Soc.
, Vol. 
73
, No. 
7
,
1990
, pp. 
1841
1853
, https://doi.org/10.1111/jace.1990.73.issue-7
47.
Eskandari
,
H.
,
Muralidhara
,
S.
,
Raghuprasad
,
B.R.
, and
Reddy
,
B.V.
, “
Size Effect in Self Compacting Concrete Beams with and without Notches
,”
Sadhana
, Vol. 
35
, No. 
3
,
2010
, pp. 
303
317
, https://doi.org/10.1007/s12046-010-0012-2
48.
Kjellsen
,
K.
,
Hallgren
,
M.
, and
Wallevik
,
O.
, “
Fracture Mechanical Properties of High-Performance Concrete-Influence of Silica Fume
,”
Mater. Struct.
, Vol. 
33
, No. 
9
,
2000
, pp. 
335
347
.
49.
Shah
,
S.G.
,
2009
, “
Fracture and Fatigue Behavior of Concrete-Concrete Interfaces using Acoustic Emission, Digital Image Correlation and Micro-Indentation Techniques
,” Ph.D thesis,
Indian Institute of Science
, Bangalore, India.
50.
Roselló
,
C.
,
Elices
,
M.
, and
Guinea
,
G.
, “
Fracture of Model Concrete: 2. Fracture Energy and Charateristic Length
,”
Cem. Concr. Res.
, Vol. 
36
, No. 
7
,
2006
, pp. 
1345
1353
, https://doi.org/10.1016/j.cemconres.2005.04.016
51.
Hemalatha
,
T.
,
Gunavadhi
,
M.
,
Bhuvaneshwari
,
B.
,
Sasmal
,
S.
, and
Iyer
,
N.R.
, “
Characterization of Micro- and Nano- Modified Cementitious System Using Micro Analytical Techniques
,”
Cem. Concr. Compos.
, Vol. 
58
,
2015
, pp. 
114
128
, https://doi.org/10.1016/j.cemconcomp.2015.01.004
52.
Lawler
,
J.S.
and
Shah
,
S.P.
, “Fracture Processes of Quasi-Brittle Materials Studied with Digital Image Correlation,”
Recent Advances in Experimental Mechanics
,
Gdoutos
E.E.
, Ed.,
Springer Netherlands
,
Dordrecht, the Netherlands
,
2002
, pp. 
335
344
.
This content is only available via PDF.
You do not currently have access to this content.