Abstract

This technical note aims to show the utility of solar energy coupled by electrobiogrouting as an environmentally friendly source of energy and prevent disposal of Ammonium in soil for the successful application of bacteria for soil improvement. A small-scale column electrokinetic cell was set up to inject carbonate-producing bacteria into the soil. Also, a solar power supply was utilized to generate a dc voltage of around 35 V for different treatment times. The results showed that the application of the concentrated solar-powered electro-microbiologically induced calcium carbonate precipitation (CSP-E-MICP) method to the soil increased the unconfined compressive strength of the soil at different curing time. The results of this experiment revealed that the unconfined shear strength of the soil increased due to the calcium carbonate (CaCO3) precipitation between the soil particles. In this method, the ammonium (NH4+) was retained in the cathode chamber by the graphite cathode electrode, and the pollution prevention system minimized the leakage of NH4+ ions into the soil.

References

1.
Whiffin
,
V.S.
,
van Paassen
,
L.A.
, and
Harkes
,
M.P.
, “
Microbial Carbonate Precipitation as a Soil Improvement Technique
,”
Geomicrobiol. J.
, Vol. 
24
, No. 
5
,
2007
, pp. 
417
423
, https://doi.org/10.1080/01490450701436505
2.
Worrell
,
E.
,
Price
,
L.
,
Martin
,
N.
,
Hendriks
,
C.
, and
Media
,
L.O.
, “
Carbon Dioxide Emissions from the Global Cement Industry
,”
Annu. Rev. Environ. Resour.
, Vol. 
26
, No. 
1
,
2001
, pp. 
303
329
.
3.
Whiffin
,
V.S.
,
2004
, “
Microbial CaCO3 Precipitation for the Production of Biocement
,” Ph.D. thesis,
Murdoch University
, Perth, Australia.
4.
DeJong
,
J.T.
,
Fritzges
,
M.B.
, and
Nüsslein
,
K.
, “
Microbially Induced Cementation to Control Sand Response to Undrained Shear
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
132
, No. 
11
,
2006
, pp. 
1381
1392
, https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)
5.
Ivanov
,
V.
and
Chu
,
J.
, “
Applications of Microorganisms to Geotechnical Engineering for Bioclogging and Biocementation of Soil in Situ
,”
Rev. Environ. Sci. Biotechnol.
, Vol. 
7
. No. 
2
,
2008
, pp. 
139
153
.
6.
Mitchell
,
A.C.
and
Ferris
,
F.G.
, “
The Influence of Bacillus Pasteurii on the Nucleation and Growth of Calcium Carbonate
,”
Geomicrobiol. J.
, Vol. 
23
, Nos.
3-4
,
2006
, pp. 
213
226
, https://doi.org/10.1080/01490450600724233
7.
Van Paassen
,
L.A.
,
Harkes
,
M.P.
,
Van Zwieten
,
G.A.
,
Van der Zon
,
W.H.
,
Van der Star
,
W.R. L.
, and
Van Loosdrecht
,
M.C. M.
, “
Scale up of BioGrout: a Biological Ground Reinforcement Method
,” presented at the
17th International Conference on Soil Mechanics and Geotechnical Engineering
, Alexandria, Egypt, October 5–9,
2009
,
Lansdale IOS Press
,
Amsterdam, The Netherlands
, pp. 
2328
2333
.
8.
van Paassen
,
L.A.
,
Daza
,
C.M.
,
Staal
,
M.
,
Sorokin
,
D.Y.
,
van der Zon
,
W.
, and
van Loosdrecht
,
M.C.
, “
Potential Soil Reinforcement by Biological Denitrification
,”
Ecol. Eng.
, Vol. 
36
, No. 
2
,
2010
, pp. 
168
175
, https://doi.org/10.1016/j.ecoleng.2009.03.026
9.
Harkes
,
M.P.
,
Van Paassen
,
L.A.
,
Booster
,
J.L.
,
Whiffin
,
V.S.
, and
van Loosdrecht
,
M.C.
, “
Fixation and Distribution of Bacterial Activity in Sand to Induce Carbonate Precipitation for Ground Reinforcement
,”
Ecol. Eng.
, Vol. 
36
, No. 
2
,
2010
, pp. 
112
117
, https://doi.org/10.1016/j.ecoleng.2009.01.004
10.
Sari
,
Y.D.
, “
Soil Strength Improvement by Microbial Cementation
,”
Mar. Georesourc. Geotech.
, Vol. 
33
, No. 
6
,
2015
, pp. 
567
571
, https://doi.org/10.1080/1064119X.2014.953234
11.
Gurbuz
,
A.
,
Sari
,
Y.D.
, and
Yuksekdag
,
Z.N.
, “
Bacteria-Induced Cementation in Sandy Soils
,”
Geomicrobiol. J.
, Vol. 
32
, No. 
9
,
2015
, pp. 
853
859
, https://doi.org/10.1080/01490451.2015.1016246
12.
Khan
,
M.N. H.
,
Kawasaki
,
S.
, and
Hassan
,
M.R.
, “
Sand Solidification through Microbially Induced Carbonate Precipitation for Erosion Control: Prospects in Bangladesh
,”
J. Environ. Sci. Nat. Resour.
, Vol. 
9
, No. 
1
,
2016
, pp. 
59
61
, https://doi.org/10.3329/jesnr.v9i1.30292
13.
Khan
,
M.N. H.
,
Amarakoon
,
G.G. N. N.
,
Shimazaki
,
S.
, and
Kawasaki
,
S.
, “
Coral Sand Solidification Test Based on Microbially Induced Carbonate Precipitation Using Ureolytic Bacteria
,”
Mater. Trans.
, Vol. 
56
, No. 
10
,
2015
, pp. 
1725
1732
, https://doi.org/10.2320/matertrans.M-M2015820
14.
Amarakoon
,
G.G. N. N.
and
Kawasaki
,
S.
, “
Factors Affecting the Improvement of Sand Properties Treated with Microbially-Induced Calcite Precipitation
,” presented at
Geo-Chicago 2016
, Chicago, IL, August 14-18,
2016
,
American Society of Civil Engineers
,
Reston, VA
, pp. 
72
83
, https://doi.org/10.1061/9780784480120.009
15.
Keykha
,
H.A.
,
Asadi
,
A.
, and
Zareian
,
M.
, “
Environmental Factors Affecting the Compressive Strength of Microbiologically Induced Calcite Precipitation Treated Soil
,”
Geomicrobiol. J.
,
2017
, pp. 
1
6
, https://doi.org/10.1080/01490451.2017.1291772
16.
Li
,
M.
,
Fu
,
Q.L.
,
Zhang
,
Q.
,
Achal
,
V.
, and
Kawasaki
,
S.
, “
Bio-Grout Based on Microbially Induced Sand Solidification by Means of Asparaginase Activity
,”
Sci. Rep.
, Vol. 
5
,
2015
, p. 16128.
17.
Achal
,
V.
and
Kawasaki
,
S.
, “
Biogrout: A Novel Binding Material for Soil Improvement and Concrete Repair
,”
Front. Microbiol.
, Vol. 
7
,
2016
, p. 314.
18.
Suer
,
P.
,
Hallberg
,
N.
,
Carlsson
,
C.
,
Bendz
,
D.
, and
Holm
,
G.
, “
Bio Grouting Compared to Jet Grouting: Environmental (LCA) and Economical Assessment
,”
J. Environ. Sci. Health A
, Vol. 
44
, No. 
4
,
2009
, pp. 
346
353
, https://doi.org/10.1080/10934520802659679
19.
DeJong
,
J.T.
,
Mortensen
,
B.M.
,
Martinez
,
B.C.
, and
Nelson
,
D.C.
, “
Bio-Mediated Soil Improvement
,”
Ecol. Eng.
, Vol. 
36
, No. 
2
,
2010
, pp. 
197
210
, https://doi.org/10.1016/j.ecoleng.2008.12.029
20.
Keykha
,
H.A.
,
Huat
,
B.B.
, and
Asadi
,
A.
, “
Electro-Biogrouting Stabilisation of Soft Soil
,”
Environ. Geotech.
, Vol. 
2
, No. 
5
,
2015
, pp. 
292
300
, https://doi.org/10.1680/envgeo.13.00068
21.
Alshawabkeh
,
A.N.
,
Sheahan
,
T.C.
, and
Wu
,
X.
, “
Coupling of Electrochemical and Mechanical Processes in Soils Under DC Fields
,”
Mech. Mater.
, Vol. 
36
, No. 
5
,
2004
, pp. 
453
465
, https://doi.org/10.1016/S0167-6636 (03)00071-1
22.
Masliyah
,
J.H.
and
Bhattacharjee
,
S.
,
Electrokinetic and Colloid Transport Phenomena
,
John Wiley & Sons
,
Hoboken, NJ
,
2006
.
23.
Masliyah
,
J.H.
and
Bhattacharjee
,
S.
, “
Electrokinetic Applications
,”
Electrokinetic and Colloid Transport Phenomena
,
John Wiley & Sons
,
Hoboken, NJ
,
2006
, pp. 
613
671
, https://doi.org/10.1002/0471799742.ch15
24.
Keykha
,
H.A.
,
Huat
,
B.B.
,
Asadi
,
A.
,
Zareian
,
M.
, and
Kawasaki
,
S.
, “
Electrokinetic Properties of Pasteurii and Aquimarina Bacteria
,”
Environ. Geotech.
, Vol. 
2
, No. 
3
,
2015
, pp. 
181
188
, https://doi.org/10.1680/envgeo.13.00072
25.
DeFlaun
,
M.F.
and
Condee
,
C.W.
, “
Electrokinetic Transport of Bacteria
,”
J. Hazard. Mater.
, Vol. 
55
, No. 
1
,
1997
, pp. 
263
277
, https://doi.org/10.1016/S0304-3894(97)00023-X
26.
Alshawabkeh
,
A.N.
and
Bricka
,
R.M.
, “
Basics and Applications of Electrokinetic Remediation
,”
Environ. Sci. Pollut. Control
,
2000
, pp. 
95
112
.
27.
Burgreen
,
D.
and
Nakache
,
F.R
, “
Electrokinetic Flow in Ultrafine Capillary Slits
,”
J. Phys. Chem.
, Vol. 
68
, No. 
5
,
1964
, pp. 
1084
1091
.
28.
Osterle
,
J.F.
, “
Electrokinetic Energy Conversion
,”
J. App. Mech.
, Vol. 
31
, No. 
2
,
1964
, pp. 
161
164
.
29.
ASTM D698
Standard Test Methods for Laboratory Compaction Characteristics on Soil Using Standard Effort
,
ASTM International
,
West Conshohocken, PA
,
2005
, www.astm.org
30.
ASTM D422
Standard Test Method for Particle Size Analysis of Soils
,
ASTM International
,
West Conshohocken, PA
,
2005
, www.astm.org
31.
ASTM D2434
Standard Test Method for Permeability of Granular Soils (Constant Head)
(Withdrawn
2015
),
ASTM International
,
West Conshohocken, PA
,
2006
, www.astm.org
32.
ASTM D854
Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
33.
ASTM D2216
Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
,
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org
34.
ASTM D6913
Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
35.
Mortensen
,
B.M.
,
Haber
,
M.J.
,
DeJong
,
J.T.
,
Caslake
,
L.F.
, and
Nelson
,
D.C.
, “
Effects of Environmental Factors on Microbial Induced Calcium Carbonate Precipitation
,”
J. Appl. Microbiol.
, Vol. 
111
, No. 
2
,
2011
, pp. 
338
349
.
36.
ASTM D1557
Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56, 000 ft-lbf/ft3 [2,700 kN-m/m3])
,
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
37.
Keykha
,
H.A.
,
Huat
,
B.B.
, and
Asadi
,
A.
, “
Electrokinetic Stabilization of Soft Soil Using Carbonate Producing Bacteria
,”
Geotech. Geol. Eng.
, Vol. 
14
, No. 
5
,
2014
, pp. 
739
747
.
38.
Baethgen
,
W.E.
and
Alley
,
M.M.
, “
A Manual Colorimetric Procedure for Measuring Ammonium Nitrogen in Soil and Plant Kjeldahl Digests
,”
Commun. Soil Sci. Plant Anal.
, Vol. 
20
, Nos.
9–10
,
1989
, pp. 
961
969
, https://doi.org/10.1080/00103628909368129
39.
Yuan
,
S.
,
Zheng
,
Z.
,
Chen
,
J.
, and
Lu
,
X.
, “
Use of Solar Cell in Electrokinetic Remediation of Cadmium-Contaminated Soil
,”
J. Hazard. Mater.
, Vol. 
162
, No. 
2
,
2009
, pp. 
1583
1587
, https://doi.org/10.1016/j.jhazmat.2008.06.038
40.
Acar
,
Y.B.
,
Gale
,
R.J.
,
Putnam
,
G.A.
,
Hamed
,
J.
, and
Wong
,
R.L.
, “
Electrochemical Processing of Soils: Theory of pH Gradient Development by Diffusion, Migration, and Linear Convection
,”
J. Environ. Sci. Health A
, Vol. 
25
, No. 
6
,
1990
, pp. 
687
714
, https://doi.org/10.1080/10934529009375590
41.
Chien
,
S.C.
,
Ou
,
C.Y.
, and
Lo
,
W.W.
, “
Electro-Osmotic Chemical Treatment of Clay with Interbedded Sand
,”
Proc. Inst. Civil Eng. Geotech. Eng.
, Vol. 
167
, No. 
1
,
2014
, pp. 
62
71
, https://doi.org/10.1680/geng.11.00076
This content is only available via PDF.
You do not currently have access to this content.