Abstract

Desiccation cracking is a phenomenon commonly associated with the fine-grained soils, which initiates at their surface and subsequently propagates deeper inside their matrix. Hence, for safe and durable infrastructure development, stabilization of such soils becomes important. In order to stabilize these soils, cement, chemicals, and fibers have been employed by earlier researchers. However, in recent times, the ill effects of these stabilizers on the ecosystem have been realized, and hence their replacement with sustainable materials that are mostly industrial by-products is becoming necessary. This philosophy would not only conserve natural resources, but would also result in a “marriage” between “two suitable” materials to create a “synergy” within the ecosystem. With this in view, the ground granulated blast furnace slag (GGBS), a by-product from the iron and steel plants, was activated by red mud (RM), a by-product from alumina manufacturing units, with an objective to establish its utility in stabilizing the fine-grained soils against desiccation cracking. To achieve this, the parameter crack intensity factor (CIF), which has been employed by earlier researchers to quantify cracking characteristics of the (virgin) soil mass, has been employed for the soils amended with GGBS and RM. Subsequently, the CIF has been correlated with the soil specific parameters (viz., cation exchange capacity and tensile strength) and the environmental conditions (viz., humidity and temperature), represented by the evaporation rate of the soil mass. Based on these extensive investigations, it has been demonstrated that such correlations would be very useful for selection of the right combination of the soil and sustainable material(s) to achieve a stabilized system of the fine-grained soil. It has been put forth through this study that the by-products chosen exhibit high potential to stabilize the fine-grained soils, which also resulted in alteration of their micro-structure and strength post stabilization. Furthermore, studies have been carried out to establish the effect of addition of industrial by-products to virgin soils, mainly in terms of their micro-structure, which in turn controls their strength.

References

1.
Hueckel
,
T.
, “
Water-Mineral Interaction in Hygromechanics of Clays Exposed to Environmental Loads: A Mixture-Theory Approach
,”
Can. Geotech. J.
, Vol.
29
, No.
6
,
1992
, pp.
1071
1086
. https://doi.org/10.1139/t92-124
2.
Tang
,
C.
,
Shi
,
B.
,
Liu
,
C.
,
Zhao
,
L.
, and
Wang
,
B.
, “
Influencing Factors of Geometrical Structure of Surface Shrinkage Cracks in Clayey Soils
,”
Eng. Geol.
, Vol.
101
, Nos.
3–4
,
2008
, pp.
204
217
. https://doi.org/10.1016/j.enggeo.2008.05.005
3.
Ene
,
E.
and
Okagbue
,
C.
, “
Some Basic Geotechnical Properties of Expansive Soil Modified Using Pyroclastic Dust
,”
Eng. Geol.
, Vol.
107
, Nos.
1–2
,
2009
, pp.
61
65
. https://doi.org/10.1016/j.enggeo.2009.03.007
4.
Peron
,
H.
,
Hueckel
,
T.
,
Laloui
,
L.
, and
Hu
,
L. B.
, “
Fundamentals of Desiccation Cracking of Fine-Grained Soils: Experimental Characterisation and Mechanisms Identification
,”
Can. Geotech. J.
, Vol.
46
, No.
10
,
2009
, pp.
1177
1201
. https://doi.org/10.1139/T09-054
5.
Izdebska-Mucha
,
D.
and
Wójcik
,
E.
, “
Testing Shrinkage Factors: Comparison of Methods and Correlation With Index Properties of Soils
,”
Bull. Eng. Geol. Environ.
, Vol.
72
, No.
1
,
2013
, pp.
15
24
. https://doi.org/10.1007/s10064-012-0449-0
6.
Uday
,
K. V.
and
Singh
,
D. N.
, “
Investigation on Cracking Characteristics of Fine-Grained Soils Under Varied Environmental Conditions
,”
Dry. Technol.
, Vol.
31
, No.
11
,
2013
, pp.
1255
1266
. https://doi.org/10.1080/07373937.2013.785433
7.
Scherer
,
G. W.
, “
Theory of Drying
,”
J. Am. Ceram. Soc.
, Vol.
73
, No.
1
,
1990
, pp.
3
14
. https://doi.org/10.1111/j.1151-2916.1990.tb05082.x
8.
Kodikara
,
J. K.
,
Barbour
,
S. L.
, and
Fredlund
,
D. G.
, “
Desiccation Cracking of Soil Layers
,” presented at the
Asian Conference on Unsaturated Soils: From Theory to Practice
, Guilin, Singapore, May 18–19,
2000
,
CRC Press
,
Boca Raton, FL
, pp.
693
698
.
9.
Yesiller
,
N.
,
Miller
,
C. J.
,
Inci
,
G.
, and
Yaldo
,
K.
, “
Desiccation and Cracking Behavior of Three Compacted Landfill Liner Soils
,”
Eng. Geol.
, Vol.
57
, Nos.
1–2
,
2000
, pp.
105
121
. https://doi.org/10.1016/S0013-7952(00)00022-3
10.
Choquette
,
M.
,
Berube
,
M.
, and
Locat
,
J.
, “
Mineralogical and Microtextural Changes Associated With Lime Stabilization of Marine Clays From Eastern Canada
,”
Appl. Clay Sci.
, Vol.
2
, No.
1
,
1987
, pp.
215
232
. https://doi.org/10.1016/0169-1317(87)90032-9
11.
Bell
,
F. G.
, “
Lime Stabilization of Clay Minerals and Soils
,”
Eng. Geol.
, Vol.
42
, No.
4
,
1996
, pp.
223
237
. https://doi.org/10.1016/0013-7952(96)00028-2
12.
Rajasekaran
,
G.
and
Rao
,
S. N.
, “
Lime Migration Studies in Marine Clays
,”
Ocean Eng.
, Vol.
23
, No.
4
,
1996
, pp.
325
355
. https://doi.org/10.1016/0029-8018(95)00030-5
13.
Cuisinier
,
O.
,
Auriol
,
J.-C.
,
Le Borgne
,
T.
, and
Deneele
,
D.
, “
Microstructure and Hydraulic Conductivity of a Compacted Lime-Treated Soil
,”
Eng. Geol.
, Vol.
123
, No.
3
,
2011
, pp.
187
193
. https://doi.org/10.1016/j.enggeo.2011.07.010
14.
Al-Mukhtar
,
M.
,
Khattab
,
S.
, and
Alcover
,
J.-F.
, “
Microstructure and Geotechnical Properties of Lime-Treated Expansive Clayey Soil
,”
Eng. Geol.
, Vols.
139–140
,
2012
, pp.
17
27
. https://doi.org/10.1016/j.enggeo.2012.04.004
15.
Makusa
,
G. P.
, “
Soil Stabilization Methods and Materials
,” Ph.D. thesis,
Lulea University of technology
, Lulea, Sweden, 2012.
16.
Önal
,
O.
, “
Lime Stabilization of Soils Underlying a Salt Evaporation Pond: A Laboratory Study
,”
Mar. Geores. Geotechnol.
, Vol.
33
, No.
5
,
2015
, pp.
391
402
. https://doi.org/10.1080/1064119X.2014.909297
17.
Tremblay
,
H.
,
Duchesne
,
J.
,
Locat
,
J.
, and
Leroueil
,
S.
, “
Influence of the Nature of Organic Compounds on Fine Soil Stabilization With Cement
,”
Can. Geotech. J.
, Vol.
39
, No.
3
,
2002
, pp.
535
546
. https://doi.org/10.1139/t02-002
18.
Chew
,
S. H.
,
Kamruzzaman
,
A. H. M.
, and
Lee
,
F. H.
, “
Physicochemical and Engineering Behavior of Cement Treated Clays
,”
J. Geotech. Geoenviron. Eng.
, Vol.
130
, No.
7
,
2004
, pp.
696
706
. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(696)
19.
Chen
,
H.
and
Wang
,
Q.
, “
The Behaviour of Organic Matter in the Process of Soft Soil Stabilization Using Cement
,”
Bull. Eng. Geol. Environ.
, Vol.
65
, No.
4
,
2006
, pp.
445
448
. https://doi.org/10.1007/s10064-005-0030-1
20.
Tingle
,
J.
,
Newman
,
J.
,
Larson
,
S.
,
Weiss
,
C.
, and
Rushing
,
J.
, “
Stabilization Mechanisms of Nontraditional Additives
,”
Transp. Res. Rec.
, Vol.
1989
, No.
2007
,
1989
, pp.
59
67
.
21.
Katz
,
L.
,
Rauch
,
A.
,
Liljestrand
,
H.
,
Harmon
,
J.
,
Shaw
,
K.
, and
Albers
,
H.
, “
Mechanisms of Soil Stabilization With Liquid Ionic Stabilizer
,”
Transp. Res. Rec.
, Vol.
1757
, No.
1
,
2001
, pp.
50
57
. https://doi.org/10.3141/1757-06
22.
Tang
,
C.
,
Shi
,
B.
,
Gao
,
W.
,
Chen
,
F.
, and
Cai
,
Y.
, “
Strength and Mechanical Behavior of Short Polypropylene Fiber Reinforced and Cement Stabilized Clayey Soil
,”
Geotext. Geomembr.
, Vol.
25
, No.
3
,
2007
, pp.
194
202
. https://doi.org/10.1016/j.geotexmem.2006.11.002
23.
Harianto
,
T.
,
Hayashi
,
S.
,
Du
,
Y.-J.
, and
Suetsugu
,
D.
, “
Effects of Fiber Additives on the Desiccation Crack Behavior of the Compacted Akaboku Soil as a Material for Landfill Cover Barrier
,”
Water. Air. Soil Pollut.
, Vol.
194
, Nos.
1–4
,
2008
, pp.
141
149
. https://doi.org/10.1007/s11270-008-9703-2
24.
Moayedi
,
H.
,
Mosallanezhad
,
M.
,
Nazir
,
R.
,
Kazemian
,
S.
, and
Huat
,
B. K.
, “
Peaty Soil Improvement by Using Cationic Reagent Grout and Electrokintic Method
,”
Geotech. Geol. Eng.
, Vol.
32
, No.
4
,
2014
, pp.
933
947
. https://doi.org/10.1007/s10706-014-9770-7
25.
Mohammed
,
A. S.
and
Vipulanandan
,
C.
, “
Compressive and Tensile Behavior of Polymer Treated Sulfate Contaminated CL Soil
,”
Geotech. Geol. Eng.
, Vol.
32
, No.
1
,
2014
, pp.
71
83
. https://doi.org/10.1007/s10706-013-9692-9
26.
Zhao
,
H.
,
Ge
,
L.
,
Petry
,
T. M.
, and
Sun
,
Y.-Z.
, “
Effects of Chemical Stabilizers on an Expansive Clay
,”
KSCE J. Civ. Eng.
, Vol.
18
, No.
4
,
2014
, pp.
1009
1017
. https://doi.org/10.1007/s12205-013-1014-5
27.
Jayanthi
,
P. N. V.
and
Singh
,
D. N.
, “
Utilization of Sustainable Materials for Soil Stabilization: State-of-the-Art
,”
Adv. Civ. Eng. Mater.
, Vol.
5
, No.
1
,
2016
, pp.
46
79
. https://doi.org/10.1520/ACEM20150013
28.
Miller
,
G. A.
and
Azad
,
S.
, “
Influence of Soil Type on Stabilization With Cement Kiln Dust
,”
Constr. Build. Mater.
, Vol.
14
, No.
2
,
2000
, pp.
89
97
. https://doi.org/10.1016/S0950-0618(00)00007-6
29.
Basha
,
E. A.
,
Hashim
,
R.
,
Mahmud
,
H. B.
, and
Muntohar
,
A. S.
, “
Stabilization of Residual Soil With Rice Husk Ash and Cement
,”
Constr. Build. Mater.
, Vol.
19
, No.
6
,
2005
, pp.
448
453
. https://doi.org/10.1016/j.conbuildmat.2004.08.001
30.
Poh
,
H. Y.
,
Ghataora
,
G. S.
, and
Ghazireh
,
N.
, “
Soil Stabilization Using Basic Oxygen Steel Slag Fines
,”
J. Mater. Civ. Eng.
, Vol.
18
, No.
2
,
2006
, pp.
229
240
. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(229)
31.
Yin
,
C.-Y.
,
Bin Mahmud
,
H.
, and
Shaaban
,
M. G.
, “
Stabilization/Solidification of Lead-Contaminated Soil Using Cement and Rice Husk Ash
,”
J. Hazard. Mater.
, Vol.
137
, No.
3
,
2006
, pp.
1758
1764
. https://doi.org/10.1016/j.jhazmat.2006.05.013
32.
Kalkan
,
E.
, “
Influence of Silica Fume on the Desiccation Cracks of Compacted Clayey Soils
,”
Appl. Clay Sci.
, Vol.
43
, Nos.
3–4
,
2009
, pp.
296
302
. https://doi.org/10.1016/j.clay.2008.09.002
33.
Eberemu
,
A. O.
, “
Desiccation Induced Shrinkage of Compacted Tropical Clay Treated With Rice Husk Ash
,”
Int. J. Eng. Res. Africa
, Vol.
6
,
2011
, pp.
45
64
. https://doi.org/10.4028/www.scientific.net/JERA.6.45
34.
Horpibulsuk
,
S.
,
Phetchuay
,
C.
, and
Chinkulkijniwat
,
A.
, “
Soil Stabilization by Calcium Carbide Residue and Fly Ash
,”
J. Mater. Civ. Eng.
, Vol.
24
, No.
2
,
2012
, pp.
184
194
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000370
35.
Moses
,
G.
and
Afolayan
,
J. O.
, “
Desiccation-Induced Volumetric Shrinkage of Compacted Foundry Sand Treated With Cement Kiln Dust
,”
Geotech. Geol. Eng.
, Vol.
31
, No.
1
,
2013
, pp.
163
172
. https://doi.org/10.1007/s10706-012-9577-3
36.
Yi
,
Y.
,
Gu
,
L.
,
Liu
,
S.
, and
Puppala
,
A. J.
, “
Carbide Slag–Activated Ground Granulated Blastfurnace Slag for Soft Clay Stabilization
,”
Can. Geotech. J.
, Vol.
52
, No.
5
,
2015
, pp.
656
663
. https://doi.org/10.1139/cgj-2014-0007
37.
Uday
,
K. V.
,
Prathyusha
,
J. N. V.
,
Singh
,
D. N.
, and
Apte
,
P. R.
, “
Application of the Taguchi Method in Establishing Criticality of Parameters That Influence Cracking Characteristics of Fine-Grained Soils
,”
Dry. Technol.
, Vol.
33
, No.
9
,
2015
, pp.
1138
1149
. https://doi.org/10.1080/07373937.2015.1015032
38.
Higgins
,
D.
, “
Soil Stabilisation With Ground Granulated Blastfurnace Slag
,”
UK Cement Slag Makers Association
, September
2005
, Publisher, Publisher Location, pp.
1
15
.
39.
Kim
,
H.-S.
,
Park
,
J.-W.
,
An
,
Y.-J.
,
Bae
,
J.-S.
, and
Han
,
C.
, “
Activation of Ground Granulated Blast Furnace Slag Cement by Calcined Alunite
,”
Mater. Trans.
, Vol.
52
, No.
2
,
2011
, pp.
210
218
. https://doi.org/10.2320/matertrans.M2010350
40.
Obuzor
,
G. N.
,
Kinuthia
,
J. M.
, and
Robinson
,
R. B.
, “
Soil Stabilisation With Lime-Activated-GGBS—A Mitigation to Flooding Effects on Road Structural Layers/Embankments Constructed on Floodplains
,”
Eng. Geol.
, Vol.
151
,
2012
, pp.
112
119
. https://doi.org/10.1016/j.enggeo.2012.09.010
41.
Hind
,
A. R.
,
Bhargava
,
S. K.
, and
Grocott
,
S. C.
, “
The Surface Chemistry of Bayer Process Solids: A Review
,”
Coll. Su:rf. A Physicochem. Eng. Asp.
, Vol.
146
, Nos.
1–3
,
1999
, pp.
359
374
. https://doi.org/10.1016/S0927-7757(98)00798-5
42.
Krizek
,
R.
, “
Slurries in Geotechnical Engineering
,” 12th Spencer J. Buchanan lecture,
Texas A&M University
,
College Station, Texas
,
2004
.
43.
Cabllk
,
V.
, “
Characterization and Applications of Red Mud From Bauxite Processing
,”
Gospodarka Surowcami Miner.
, Vol.
23
, No.
4
, pp.
27
33
.
44.
Wang
,
P.
and
Liu
,
D. Y.
, “
Physical and Chemical Properties of Sintering Red Mud and Bayer Red Mud and the Implications for Beneficial Utilization
,”
Materials (Basel)
, Vol.
5
, No.
10
,
2012
, pp.
1800
1810
. https://doi.org/10.3390/ma5101800
45.
Song
,
S.
and
Jennings
,
H. M.
, “
Pore Solution Chemistry of Alkali-Activated Ground Granulated Blast-Furnace Slag
,”
Cem. Concr. Res.
, Vol.
29
, No.
2
,
1999
, pp.
159
170
. https://doi.org/10.1016/S0008-8846(98)00212-9
46.
ASTM D422-63(2007)e2,
Standard Test Method for Particle Size Analysis of Soils
,
ASTM International
,
West Conshohocken, PA
,
2007
, www.astm.org
47.
ASTM D4318-10e1,
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
,
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org
48.
ASTM D5550-14,
Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer 1
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
49.
Carter
,
D. L.
,
Heilman
,
M. D.
, and
Gonzalez
,
C. L.
, “
Ethylene Glycol Monoethyl Ether for Determining Surface Area of Silicate Minerals
,”
Soil Sci.
, Vol.
100
, No.
6
,
1985
, pp.
356
361
.
50.
Arnepalli
,
D. N.
,
Shanthakumar
,
S.
,
Hanumantha Rao
,
B.
, and
Singh
,
D. N.
, “
Comparison of Methods for Determining Specific-Surface Area of Fine-Grained Soils
,”
Geotech. Geol. Eng.
, Vol.
26
, No.
2
,
2008
, pp.
121
132
. https://doi.org/10.1007/s10706-007-9152-5
51.
Chapman
,
H. D.
, “
Cation Exchange Capacity
,”
Methods Soil Anal. Am. Soc. Soil Agron.
,
Black
C. A.
, Ed., Publisher, Publisher Location,
1965
, pp.
891
901
.
52.
Tang
,
C.
,
Shi
,
B.
,
Liu
,
C.
,
Gao
,
L.
, and
Inyang
,
H. I.
, “
Experimental Investigation of the Desiccation Cracking Behavior of Soil Layers During Drying
,”
J. Mater. Civ. Eng.
, Vol.
23
, No.
6
,
2011
, pp.
873
878
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000242
53.
Zeh
,
R. M.
and
Witt
,
K. J.
, “
Suction-Controlled Tensile Strength of Compacted Clays
,” presented at the
16th International Conference on Soil Mechanics and Geotechnical Engineering
, Osaka, Japan, September 12–15,
2005
,
IOS Press
,
Amsterdam, the Netherlands
, pp.
2347
2350
.
54.
Shinde
,
S. B.
,
Kala
,
V. U.
,
Kadali
,
S.
,
Tirumkudulu
,
M. S.
, and
Singh
,
D. N.
, “
A Novel Methodology for Measuring the Tensile Strength of Expansive Clays
,”
Geomech. Geoeng.
, Vol.
7
, No.
1
,
2012
, pp.
15
25
. https://doi.org/10.1080/17486025.2011.599867
55.
Venkataramana
,
K.
,
Rao
,
B. H.
, and
Singh
,
D. N.
, “
A Critical Review of the Methodologies Employed for Determination of Tensile Strength of Fine-Grained Soils
,”
J. Test. Eval.
, Vol.
37
, No.
2
,
2012
, pp.
1
7
. https://doi.org/10.1520/JTE101989
56.
Kadali
,
S.
,
Sharma
,
S.
, and
Singh
,
D. N.
, “
Application of Nanoindentation to Establish Influence of Heat on Soils
,”
Eng. Geol.
, Vol.
162
,
2013
, pp.
14
21
. https://doi.org/10.1016/j.enggeo.2013.05.004
57.
Jiang
,
W. G.
,
Su
,
J. J.
, and
Feng
,
X. Q.
, “
Effect of Surface Roughness on Nanoindentation Test of Thin Films
,”
Eng. Fract. Mech.
, Vol.
75
, No.
17
,
2008
, pp.
4965
4972
. https://doi.org/10.1016/j.engfracmech.2008.06.016
58.
Chen
,
L.
,
Ahadi
,
A.
,
Zhou
,
J.
, and
Ståhl
,
J.-E.
, “
Modeling Effect of Surface Roughness on Nanoindentation Tests
,”
Proc. CIRP
, Vol.
8
,
2013
, pp.
334
339
. https://doi.org/10.1016/j.procir.2013.06.112
59.
Tej
,
P. R.
and
Singh
,
D. N.
, “
Estimation of Tensile Strength of Soils From Penetration Resistance
,”
Int. J. Geomech.
, Vol.
13
, No.
5
,
2012
, pp.
496
501
. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000234
60.
Horn
,
R.
,
Taubner
,
H.
,
Wuttke
,
M.
, and
Baumgartl
,
T.
, “
Soil Physical Properties Related to Soil Structure
,”
Soil Tillage Res.
, Vol.
30
, Nos.
2–4
,
1994
, pp.
187
216
. https://doi.org/10.1016/0167-1987(94)90005-1
61.
Iyer
,
K.
,
Jayanth
,
S.
,
Gurnani
,
S.
, and
Singh
,
D. N.
, “
Influence of Initial Water Content and Specimen Thickness on the SWCC of Fine-Grained Soils
,”
Int. J. Geomech.
, Vol.
13
, No.
6
,
2013
, pp.
894
899
. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000265
62.
Decagon Device
I.
,
WP4C Dew Point PotentiaMeter. Operator's Manual
,
Decagon
,
Pullman, WA
,
2013
.
63.
Fredlund
,
D. G.
,
Xing
,
A.
, and
Huang
,
S.
, “
Predicting the Permeability Function for Unsaturated Soils Using the Soil-Water Characteristic Curve
,”
Can. Geotech. J.
, Vol.
31
, No.
4
,
1994
, pp.
533
546
. https://doi.org/10.1139/t94-062
64.
Thakur
,
V. K. S.
,
Sreedeep
,
S.
, and
Singh
,
D. N.
, “
Laboratory Investigations on Extremely High Suction Measurements for Fine-Grained Soils
,”
Geotech. Geol. Eng.
, Vol.
24
, No.
3
,
2006
, pp.
565
578
. https://doi.org/10.1007/s10706-005-1147-5
65.
Jayanth
,
S.
,
Iyer
,
K.
, and
Singh
,
D. N.
, “
Influence of Drying and Wetting Cycles on SWCCs of Fine-Grained Soils
,”
J. Test. Eval.
, Vol.
40
, No.
3
,
2012
, pp.
375
386
. https://doi.org/10.1520/JTE104184
66.
Diamond
,
S.
, “
Pore Size Distributions in Clays
,”
Clays Clay Miner.
, Vol.
18
,
1970
, pp.
7
23
. https://doi.org/10.1346/CCMN.1970.0180103
67.
Giesche
,
H.
, “
Mercury Porosimetry: A General (Practical) Overview
,”
Part. Part. Syst. Charact.
, Vol.
23
, No.
1
,
2006
, pp.
9
19
. https://doi.org/10.1002/ppsc.200601009
68.
Moon
,
H. Y.
,
Kim
,
H. S.
, and
Choi
,
D. S.
, “
Relationship Between Average Pore Diameter and Chloride Diffusivity in Various Concretes
,”
Constr. Build. Mater.
, Vol.
20
, No.
9
,
2006
, pp.
725
732
. https://doi.org/10.1016/j.conbuildmat.2005.02.005
69.
Gumaste
,
S. D.
and
Singh
,
D. N.
, “
Application of Impedance Spectroscopy for Determining Fabric Anisotropy of Fine-Grained Soils
,”
J. Test. Eval.
, Vol.
38
, No.
3
,
2010
, pp.
1
10
. https://doi.org/10.1520/JTE102624
70.
Reeve
,
M. J.
,
Hall
,
D. G. M.
, and
Bullock
,
P.
, “
The Effect of Soil Composition and Environmental Factors on the Shrinkage of Some Clayey British Soils
,”
J. Soil Sci.
, Vol.
31
, No.
3
,
1980
, pp.
429
442
. https://doi.org/10.1111/j.1365-2389.1980.tb02092.x
This content is only available via PDF.
You do not currently have access to this content.