Abstract

Multilayered cover system (MLCS) forms an integral part of engineered landfills nearing closure. Geosynthetic materials find multiple applications in MLCS as hydraulic barrier, drainage, separation, and filtration layers. Performance of geosynthetics used as filters needs to be well understood to ascertain the stability of MLCS. The main objective of this study is to investigate the compatibility of the soil-geosynthetic combination by long-term permeability tests. The compatibility of five different types of geosynthetics was evaluated with respect to two different gradations of red soil (RS) and RS–fly ash (FA) 50:50 mix. The results of long-term permeability and clogging characteristics were used to judge the effect of soil type, soil gradation, and type of geosynthetics on soil-geosynthetic compatibility. The efficacy of geosynthetics as filters was established based on (1) permeability improvement factor, which is defined as the ratio of the permeability of soil-geosynthetic composition to the permeability of the soil, and (2) stabilization time, i.e., the time required by the soil-geosynthetic system to achieve hydraulic equilibrium. It was noted from this study that the soil type and gradation had significant effect on the long-term permeability variation. The effect of the geosynthetic on the soil-geosynthetic combination is governed by its pore-size characteristics and was found to be marginal in this study. The stabilization time of a soil-geosynthetic combination increases with increase in soil fines content. The cyclic variation in permeability with time for a particular soil was found to be similar when different geosynthetics were used. Irrespective of soil type, higher permeability improvement factor was observed in the case of a woven multifilament geosynthetic and less in the case of a geocomposite. The class F FA in conjunction with RS was found to be compatible with the geosynthetics used in this study.

References

1.
Christopher
,
B.R.
, “
Geotextiles in Landfill Closures
,”
Geotext. Geomembr.
, Vol. 
10
, No. 
5
,
1991
, pp. 
459
470
, https://doi.org/10.1016/0266-1144(91)90038-X
2.
Mackey
,
R.
, “
Three End-Uses for Closed Landfills and Their Impact on the Geosynthetic Design
,”
Geotext. Geomembr.
, Vol. 
14
, No. 
7–8
,
1996
, pp. 
409
424
, https://doi.org/10.1016/0266-1144(96)00025-8
3.
Iryo
,
T.
and
Rowe
,
R.K.
, “
Hydraulic Behaviour of Soil–Geocomposite Layers in Slopes
,”
Geosynthetics International
, Vol. 
12
, No. 
3
,
2005
, pp. 
145
155
, https://doi.org/10.1680.gein.2005.12.3.145
4.
Kalinovich
,
I.
,
Rutter
,
A.
,
Rowe
,
R.K.
,
McWatters
,
R.
, and
Poland
,
J.S.
, “
The Application of Geotextile and Granular Filters for PCB Remediation
,”
Geosynthetics International
, Vol. 
15
, No. 
3
,
2008
, pp. 
173
183
, https://doi.org/10.1680/gein.2008.15.3.173
5.
Dickinson
,
S.
and
Brachman
,
R.W. I.
, “
Permeability and Internal Erosion of a GCL Beneath Coarse Gravel
,”
Geosynthetics International
, Vol. 
17
, No. 
3
,
2010
, pp. 
112
123
, https://doi.org/10.1680.gein.2010.17.3.112
6.
Rowe
,
R.K.
,
Abdelaal
,
F.B.
, and
Brachman
,
R.W. I.
, “
Antioxidant Depletion of HDPE Geomembrane with Sand Protection Layer
,”
Geosynthetics International
, Vol. 
20
, No. 
2
,
2013
, pp. 
73
89
, https://doi.org/10.1680.gein.13.00003
7.
Qian
,
X.
and
Koerner
,
R.M.
, “
Critical Interfaces of Multilayer Geosynthetic Liner Systems
,”
Environ Geotech.
, Vol. 
2
, No. 
2
,
2015
, pp. 
118
126
, https://doi.org/10.1680.envgeo.13.00103
8.
Feng
,
S.J.
,
Ai
,
S.G.
, and
Huang
,
R.Q.
, “
Stability Analysis of Landfill Cover Systems Considering Reinforcement
,”
Environ. Earth Sci.
, Vol. 
75
, No. 
4
,
2016
, pp. 
1
10
, https://doi.org/10.1007.s12665-015-5186-9
9.
Christopher
,
B.R.
and
Holtz
,
R.D.
,
Geotextile Construction and Design Guidelines
,
HI 89-050, prepared for Federal Highway Administration
,
Washington, DC
.,
1989
.
10.
Querio
,
A.J.
and
Lundell
,
C.M.
, “
Geosynthetic Use as Daily Cover
,”
Geotext. Geomembr.
, Vol. 
11
, No. 
4–6
,
1992
, pp. 
621
627
, https://doi.org/10.1016/0266-1144(92)90036-A
11.
Kutay
,
M.E.
and
Aydilek
,
A.H.
, “
Retention Performance of Geotextile Containers Confining Geomaterials
,”
Geosynthetics International
, Vol. 
11
, No. 
2
,
2004
, pp. 
100
113
, https://doi.org/10.1680.gein.2004.11.2.100
12.
Koerner
,
R.M.
,
Lord
,
A.E.
, and
Halse
,
Y.H.
, “
Long-term Durability and Aging of Geotextiles
,”
Geotext. Geomembr.
, Vol. 
7
, No. 
1
,
1988
, pp. 
147
158
, https://doi.org/10.1016/0266-1144(88)90022-2
13.
Faure
,
Y.H.
,
Farkouh
,
B.
,
Delmas
,
P.
, and
Nancey
,
A
, “
Analysis of Geotextile Filter Behaviour after 21 Years in Valcros Dam
,”
Geotext. Geomembr.
, Vol. 
17
, Nos. 
5–6
,
1999
, pp. 
353
370
, https://doi.org/10.1016/S0266-1144(99)00010-2
14.
Giroud
,
J.P.
,
Zornberg
,
J.G.
, and
Zhao
,
A.
, “
Hydraulic Design of Geosynthetic and Granular Liquid Collection Layers
,”
Geosynthetics International
, Vol. 
7
, Nos. 
4–6
,
2000
, pp. 
285
380
, https://doi.org/10.1680/gein.7.0176
15.
Aydilek
,
A.H.
, “
A Semi-Analytical Methodology for Development of Woven Geotextile Filter Selection Criteria
,”
Geosynthetics International
, Vol. 
13
, No. 
2
,
2006
, pp. 
59
72
, https://doi.org/10.1680.gein.2006.13.2.59
16.
Wu
,
C.S.
,
Hong
,
Y.S.
, and
Wang
,
R.H.
, “
The Influence of Uniaxial Tensile Strain on the Pore Size and Filtration Characteristics of Geotextiles
,”
Geotext. Geomembr.
, Vol. 
26
, No. 
3
,
2008
, pp. 
250
262
, https://doi.org/10.1016/j.geotexmem.2007.09.004
17.
Narejo
,
D.
,
Li
,
M.
,
Zimmel
,
E.
, and
Wu
,
Y.
, “
A Monolithic Layered Nonwoven-Woven Geotextile for Use with Drainage Geocomposites in Coal Combustion Residual Projects
,”
Geotext. Geomembr.
, Vol. 
37
,
2013
, pp. 
16
22
, https://doi.org/10.1016/j.geotexmem.2013.01.001
18.
Tang
,
X.W.
,
Tang
,
L.
,
She
,
W.
, and
Gao
,
B.S.
, “
Prediction of Pore Size Characteristics of Woven Slit-film Geotextiles Subjected to Tensile Strains
,”
Geotext. Geomembr.
, Vol. 
38
,
2013
, pp. 
43
50
, https://doi.org/10.1016/j.geotexmem.2013.05.001
19.
Faure
,
Y.H.
,
Farkouh
,
B.
,
Delmas
,
P.
, and
Nancey
,
A.
, “
Analysis of Geotextile Filter Behaviour after 21 Years in Valcros Dam
.”
Geotext. Geomembr.
, Vol. 
17
, No. 
5
,
1999
, pp. 
353
370
, https://doi.org/10.1016/S0266-1144(99)00010-2
20.
Hsuan
,
Y.G.
,
Schroeder
,
H.F.
,
Rowe
,
K.
,
Müller
,
W.
,
Greenwood
,
J.
,
Cazzuffi
,
D.
, and
Koerner
,
R.M.
, “
Long-Term Performance and Lifetime Prediction of Geosynthetics
,” presented at the Euro Geo 4,
the Fourth European Geosynthetics Conference
, Edinburgh, September 7–10, 2008, International Geosynthetics Society, http://www.geosyntheticssociety.org/
21.
Take
,
W.A.
,
Rowe
,
R.K.
,
Brachman
,
R.W. I.
, and
Arnepalli
,
D.N.
, “
Thermal Exposure Conditions for a Composite Liner with a Black Geomembrane Exposed to Solar Radiation
”,
Geosynthetics International
, Vol. 
22
, No. 
1
,
2015
, pp. 
93
109
, https://doi.org/10.1680/gein.14.00034
22.
Rowe
,
R.K.
, “
From the Past to the Future of Landfill Engineering Through Case Histories
,” presented at the
Fourth International Conference on Case Histories in Geotechnical Engineering
, St. Louis, MO, March 8–15, 1998, Missouri S&T, https://www.mst.edu/.
23.
Koerner
,
R.M.
and
Koerner
,
G.R.
, “
Lessons Learned from Geotextile Filter Failures under Challenging Field Conditions
,”
Geotext. Geomembr.
, Vol. 
43
, No. 
3
,
2015
, pp. 
272
281
, https://doi.org/10.1016/j.geotexmem.2015.01.004
24.
Carroll
,
R.C.
, “
Hydraulic Properties of Geotextile
,”
Geotextile Testing and the Design Engineer, ASTM STP 952
,
ASTM International
,
West Conshohocken, PA
,
1983
, pp. 
7
20
, https://doi.org/10.1520/STP20052S
25.
Giroud
,
J.P.
, “
Quantification of Geosynthetic Behaviour
,”
Geosynthetics International
, Vol. 
12
, No. 
1
,
2005
, pp. 
2
27
, https://doi.org/10.1680.gein.2005.12.1.2
26.
Almeida
,
M.S. S.
,
Spada
,
J.
, and
Ehrlich
,
M.
, “
Geotextile Filtration Tests on Two Brazilian Soils and Current Filter Criteria
,”
Geosynthetics International
, Vol. 
2
, No. 
1
,
1995
, pp. 
357
377
, https://doi.org/10.1680/gein.2.0015
27.
Bergado
,
D.T.
,
Manivannan
,
R.
, and
Balasubramaniam
,
A.S.
, “
Filtration Criteria for Prefabricated Vertical Drain Geotextile Filter Jackets in Soft Bangkok Clay
”,
Geosynthetics International
, Vol. 
3
, No. 
1
,
1996
, pp. 
63
83
, https://doi.org/10.1680/gein.3.0054
28.
Sansone
,
L.J.
and
Koerner
,
R.M.
, “
Fine Fraction Filtration Test to Assess Geotextile Filter Performance
,”
Geotext. Geomembr.
, Vol. 
11
, No. 
4–6
,
1992
, pp. 
371
393
, https://doi.org/10.1016/0266-1144(92)90020-B
29.
Aydilek
,
A.H.
and
Edil
,
T.B.
, “
Filtration Performance of Woven Geotextiles with Wastewater Treatment Sludge
,”
Geosynthetics International
, Vol. 
9
, No. 
1
,
2002
, pp. 
41
69
, https://doi.org/10.1680/gein.9.0210
30.
Williams
,
N.D.
and
Abouzakhm
,
M.A.
, “
Evaluation of Geotextile/Soil Filtration Characteristics Using the Hydraulic Conductivity Ratio Analysis
,”
Geotext. Geomembr.
, Vol. 
8
, No. 
1
,
1989
, pp. 
1
26
, https://doi.org/10.1016/0266-1144(89)90008-3
31.
Bhatia
,
S.K.
,
Qureshi
,
S.
, and
Kogler
,
R.M.
, “
Long-Term Clogging Behavior of Non-Woven Geotextiles with Silty and Gap-Graded Sands
,”
ASTM STP 1081
,
ASTM International
,
West Conshohocken, PA
,
1990
, pp. 
285
298
, https://doi.org/10.1520/STP19039S
32.
Rao
,
G.V.
,
Gupta
,
K.K.
, and
Pradhan
,
M.P. S.
, “
Long Term Filtration Behavior of Soil-Geotextile System
,”
Geotech. Test. J.
, Vol. 
15
, No. 
3
,
1992
, pp. 
238
247
, https://doi.org/10.1520/GTJ10019J
33.
Shan
,
H.Y.
,
Wang
,
W.L.
, and
Chou
,
T.C.
, “
Effect of Boundary Conditions on the Hydraulic Behavior of Geotextile Filtration System
,”
Geotext. Geomembr.
, Vol. 
19
, No. 
8
,
2001
, pp. 
509
527
, https://doi.org/10.1016/S0266-1144(01)00018-8
34.
Raisinghani
,
D.V.
and
Viswanadham
,
B.V. S.
, “
Evaluation of Permeability Characteristics of a Geosynthetic-Reinforced Soil Through Laboratory Tests
,”
Geotext. Geomembr.
, Vol. 
28
, No. 
6
,
2010
, pp. 
579
588
, https://doi.org/10.1016/j.geotexmem.2010.01.001
35.
Chen
,
R.
,
Zhang
,
L.
, and
Budhu
,
M.
, “
Biopolymer Stabilization of Mine Tailings
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
139
, No. 
10
,
2013
, pp. 
1802
1807
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000902
36.
ASTM D 422-63
Standard Test Method for Particle Size Analysis of Soils
,
ASTM International
,
West Conshohocken, PA
,
1994
, www.astm.org
37.
ASTM D2487-10
Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
,
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org
38.
Koerner
,
R.M.
,
Designing with Geosynthetics
, 4th ed.,
Prentice Hall
,
Upper Saddle River, NJ
, 1998.
39.
Maheshwari
,
B.K.
and
Gunjagi
,
D.A.
, “
Filtration and Clogging Behavior of Geotextiles with Roorkee Soils
,”
Geotech. Geol. Eng.
, Vol. 
26
, No. 
1
,
2008
, pp. 
101
107
, https://doi.org/10.1007/s10706-007-9150-7
40.
Williams
,
N.D.
and
Luna
,
J.
, “
Selection of Geotextiles for Use with Synthetic Drainage Products
,”
Geotext. Geomembr.
, Vol. 
5
, No. 
1
,
1987
, pp. 
45
61
, https://doi.org/10.1016/0266-1144(87)90033-1
41.
ASTM D5261-10
Standard Test Method for Mass Per Unit Area of Geotextiles
,
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org
42.
ASTM D4751-12
Standard Test Method for Determining Apparent Opening Size of a Geotextile
,
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
43.
Bhatia
,
S.K.
and
Smith
,
J.L.
, “
Geotextile Characterization and Pore-Size Distribution: Part II. A Review of Test Methods and Results
,”
Geosynthetics International
, Vol. 
3
, No. 
2
,
1996
, pp. 
155
180
, https://doi.org/10.1680/gein.3.0058
44.
Fischer
,
G.R.
,
Holtz
,
R.D.
, and
Christopher
,
B.R.
, “
Evaluating Geotextile Pore Structure
,”
Recent Developments in Geotextile Filters and Prefabricated Drainage Geocomposites, ASTM STP 1281
,
S. K.
Bhatia
and
L. D.
Suits
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1996
, https://doi.org/10.1520/STP1281-EB
45.
ASTM D4491-99a
Standard Test Methods for Water Permeability of Geotextiles by Permittivity
,
ASTM International
,
West Conshohocken, PA
,
2009
, www.astm.org
46.
ASTM D4632-08
Standard Test Method for Grab Breaking Load and Elongation of Geotextiles
,
ASTM International
,
West Conshohocken, PA
,
2008
, www.astm.org
47.
ASTM D6574-00
Standard Test Method for Determining the (In-Plane) Hydraulic Transmissivity of a Geosynthetic Radial Flow
,
ASTM International
,
West Conshohocken, PA
,
2011
, www.astm.org
48.
Fannin
,
R.J.
,
Vaid
,
Y.P.
, and
Shi
,
Y.
, “
A Critical Evaluation of the Gradient Ratio Test
,”
Geotech. Test. J.
, Vol. 
17
, No. 
1
,
1994
, pp. 
35
42
, https://doi.org/10.1520/GTJ10080J
49.
Młynarek
,
J.
,
BogumiłLewandowski
,
J.
,
Rollin
,
A.
, and
Bolduc
,
G.
, “
Soil-geotextile System Interaction
,”
Geotext. Geomembr.
, Vol. 
10
, No. 
2
,
1991
, pp. 
161
176
, https://doi.org/10.1016/0266-1144(91)90027-T
50.
ASTM D 628-07
Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort
,
ASTM International
,
West Conshohocken, PA
,
2007
, www.astm.org
51.
ASTM D5567
Standard Test Method for Determining Hydraulic Conductivity Ratio of Soil/Geotextile Systems
,
ASTM International
,
West Conshohocken, PA
,
1994
, www.astm.org
52.
Fannin
,
R.
,
Vaid
,
Y.
, and
Shi
,
Y.
, “
Filtration Behaviour of Nonwoven Geotextiles
,”
Can. Geotech. J.
, Vol. 
31
, No. 
4
,
1994
, pp. 
555
563
, https://doi.org/10.1139/t94-064
53.
Denkler
,
P.
,
Bowders
,
J.
, and
Loehr
,
E.
, “
Geotextiles and Loess: Long-Term Flow
,” presented at the
Mid-Continent Transportation Symposium
, Ames, IA, May 15–16, 2000, Iowa State University, IA, pp. 
249
253
.
54.
Christopher
,
B.R.
and
Holtz
,
R.D.
,
Geotextile Engineering Mannual
, Report No. FHWA-TS-86/203, US Federal Highway Administration,
Washington, D.C.
,
1985
.
This content is only available via PDF.
You do not currently have access to this content.