Abstract

The unburned carbon (UC) content of fly ash impacts the performance (e.g., air entrainment, rheology) of concrete mixtures. The loss on ignition (LOI) test is commonly used to estimate the UC content; however, this may be inaccurate, as the weight change upon igniting fly ash is also due to calcination of carbonates, desorption of bound water, and oxidation of sulfur and iron minerals. In this study, a two-atmosphere thermogravimetric analysis (2A-TGA) coupled with mass spectrometry (MS) was performed to evaluate the chemical reactions that occur upon heating of fly ash and to measure the true UC content. 2A-TGA was performed under two distinct atmospheres: (i) in non-oxidizing helium gas, to measure weight loss due to decomposition of carbonates and loss of bound water and (ii) in oxidizing air, to measure weight loss due to conversion of UC to carbon dioxide (CO2). The method was applied to five class F fly ashes with LOI in the range 1.89 % to 7.66 %, a class C fly ash (LOI = 3.86 %), and a fluidized bed combustion (FBC) ash (LOI = 8.10 %). The results were also compared with the total carbon (TC) of each fly ash measured using infrared (IR) spectroscopy via a commercial Laboratory Equipment Corporation (LECO) carbon analyzer. The results show that there is no one-to-one relationship between the LOI and the TC or UC contents of fly ash. LOI overestimated TC by up to 2.5 times and overestimated UC by up to 6.4 times.

References

1.
Ruhl
,
L.
,
Vengosh
,
A.
,
Dwyer
,
G.S.
,
Hsu-Kim
,
H.
,
Schwartz
,
G.
,
Romanski
,
A.
, and
Smith
,
S.D.
, “
The Impact of Coal Combustion Residue Effluent on Water Resources: A North Carolina Example
,”
Environ. Sci. Technol
., Vol. 
46
, No. 
21
,
2012
, pp. 
12226
12233
, https://doi.org/10.1021/es303263x
2.
American Coal Ash Association (ACAA)
Coal Combustion Products Production and Use Survey Report
,
2013
.
3.
Provis
,
J.L.
and
Van Deventer
,
J.
,
Alkali Activated Materials: State of Art Report, RILEM TC 224-AAM
, Springer, Vol. 
13
,
2014
, pp. 12, https://doi.org/10.1007/978-94-007-7672-2
4.
Nath
,
P.
and
Sarker
,
P.
, “
Effect of Fly Ash on the Durability Properties of High Strength Concrete
,”
Procedia Eng.
, Vol. 
14
,
2011
, pp. 
1149
1156
, https://doi.org/10.1016/j.proeng.2011.07.144
5.
Sarker
,
P.K.
and
McKenzie
,
L.
, “
Strength and Hydration Heat of Concrete Using Fly Ash as a Partial Replacement
,” Proceedings of 24th Biennial Conference of the Concrete Institute of Australia, Sydney, Australia, September 17–19, The Concrete Institute of Australia, Sydney, Australia, https://doi.org/https://www.concreteinstitute.com.au
6.
Thomas
,
M.D. A.
, “
The Effect of Supplementary Cementing Materials on Alkali-Silica Reaction: A Review
,”
Cem. Concr. Res.
, Vol. 
41
, No. 
12
,
2011
, pp. 
1224
1231
, https://doi.org/10.1016/j.cemconres.2010.11.003
7.
ASTM C618-12a
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
,
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
8.
Hill
,
R.L.
,
Sarkar
,
S.L.
,
Rathbone
,
R.F.
, and
Hower
,
J.C.
, “
An Examination of Fly Ash Carbon and Its Interactions with Air Entraining Agent
,”
Cem. Concr. Res.
, Vol. 
27
, No. 
2
,
1997
, pp. 
193
204
, https://doi.org/10.1016/S0008-8846(97)00008-2
9.
Gao
,
Y.M.
,
Shim
,
H.S.
,
Hurt
,
R.H.
,
Suuberg
,
E.M.
, and
Yang
,
N.Y. C.
, “
Effects of Carbon on Air Entrainment in Fly Ash Concrete: The Role of Soot and Carbon Black
,”
Energy Fuels
, Vol. 
11
, No. 
2
,
1997
, pp. 
457
62
, https://doi.org/10.1021/ef960113x
10.
Indrek
,
K.
,
Hurt
,
R.
, and
Suuberh
,
E.
, “
Size Distribution of Unburned Carbon in Coal Fly Ash and Its Implications
,”
Fuel
, Vol. 
83
, No. 
2
,
2004
, pp. 
223
230
, https://doi.org/10.1016/S0016-2361(03)00255-2
11.
Lu
,
Y.
,
Rostam-Abadi
,
M.
,
Chang
,
R.
,
Richardson
,
C.
, and
Paradis
,
J.
, “
Characteristics of Fly Ashes from Full-Scale Coal-Fired Power Plants and Their Relationship to Mercury Adsorption
,”
Energy Fuels
, Vol. 
21
, No. 
4
,
2007
, pp. 
2112
2120
, https://doi.org/10.1021/ef070145s
12.
Yeboah
,
N.N.
,
Shearer
,
C.R.
,
Burns
,
S.E.
, and
Kurtis
,
K.E.
, “
Characterization of Biomass and High Carbon Content Coal Ash for Productive Reuse Applications
,”
Fuel
, Vol. 
116
,
2014
, pp. 
438
447
, https://doi.org/10.1016/j.fuel.2013.08.030
13.
Sharonova
,
O.M.
,
Anshits
,
N.N.
,
Yumashev
,
V.V.
, and
Anshits
,
A.G.
, “
Composition and Morphology of Char Particles of Fly Ashes from Industrial Burning of High-Ash Coals with Different Reactivity
,”
Fuel
, Vol. 
87
, Nos.
10–11
,
2008
, pp. 
1989
1997
, https://doi.org/10.1016/j.fuel.2007.10.007
14.
Maroto-Valer
,
M.M.
,
Taulbee
,
D.N.
, and
Hower
,
J.C.
, “
Characterization of Differing Forms of Unburned Carbon Present in Fly Ash Separated by Density Gradient Centrifugation
,”
Fuel
, Vol. 
80
, No. 
6
,
2001
, pp. 
795
800
, https://doi.org/10.1016/S0016-2361(00)00154-X
15.
Hower
,
J.C.
,
Senior
,
C.L.
,
Suuberg
,
E.M.
,
Hurt
,
R.H.
,
Wilcox
,
J.L.
, and
Olson
,
E.S.
, “
Mercury Capture by Native Fly Ash Carbons in Coal-Fired Power Plants
,”
Prog. Energy Combust. Sci.
, Vol. 
36
, No. 
4
,
2010
, pp. 
510
529
, https://doi.org/10.1016/j.pecs.2009.12.003
16.
Goodarzi
,
F.J.
and
Hower
,
C.
, “
Classification of Carbon in Canadian Fly Ashes and Their Implications in the Capture of Mercury
,”
Fuel
, Vol. 
87
, Nos.
10–11
,
2008
, pp. 
1949
1957
, https://doi.org/10.1016/j.fuel.2007.11.018
17.
Baltrus
,
J.P.
,
Wells
,
A.W.
,
Fauth
,
D.J.
,
Diehl
,
J.R.
, and
White
,
C.M.
, “
Characterization of Carbon Concentrates from Coal-Combustion Fly Ash
,”
Energy Fuels
, Vol. 
15
, No. 
2
,
2001
, pp. 
455
462
, https://doi.org/10.1021/ef000201o
18.
Hwang
,
J.Y.
,
Sun
,
X.
, and
Li
,
Z.
, “
Unburned Carbon from Fly Ash for Mercury Adsorption: I. Separation and Characterization of Unburned Carbon
,”
J. Miner. Mater. Char. Eng.
, Vol. 
1
, No. 
1
,
2002
, pp. 
39
60
, https://doi.org/10.4236/jmmce.2002.11004
19.
Wesche
,
K.
(ed.),
Fly Ash in Concrete: Properties and Performance, Report of Technical Committee 67-FAB Use of Fly Ash in Buildings
, E&FN Spon., London,
1991
, pp. 2, 3–24, 42–62, and
117
43
.
20.
Paya
,
J.
,
Monzo
,
J.
,
Borrachero
,
M.V.
,
Perris
,
E.
, and
Amahjour
,
F.
, “
Thermogravimetric Methods for Determining Carbon Content in Fly Ashes
,”
Cem. Concr. Res.
, Vol. 
28
, No. 
5
,
1998
, pp. 
675
686
, https://doi.org/10.1016/S0008-8846(98)00030-1
21.
Bartoňová
,
L.
, “
Unburned Carbon from Coal Combustion Ash: an Overview
,”
Fuel Process. Technol.
, Vol. 
134
,
2015
, pp. 
136
158
, https://doi.org/10.1016/j.fuproc.2015.01.028
22.
Styszko-Grochowiak
,
K.
,
Gołaś
,
J.
,
Jankowski
,
H.
, and
Koziński
,
S.
, “
Characterization of the Coal Fly Ash for the Purpose of Improvement of Industrial On-Line Measurement of Unburned Carbon Content
,”
Fuel
, Vol. 
83
, No. 
13
,
2004
, pp. 
1847
1853
, https://doi.org/10.1016/j.fuel.2004.03.005
23.
ASTM C311-2013
Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete
,
ASTM International
,
West Conshohocken, PA
,
2013
, www.astm.org
24.
Straka
,
P.
,
Náhunková
,
J.
, and
Žaloudková
,
M.
, “
Analysis of Unburned Carbon in Industrial Ashes from Biomass Combustion by Thermogravimetric Method Using Boudouard Reaction
,”
Thermochimica Acta
, Vol. 
575
,
2014
, pp. 
188
194
, https://doi.org/10.1016/j.tca.2013.10.033
25.
Brown
,
R.C.
and
Dykstra
,
J.
, “
Systematic Errors in The Use of Loss-On-Ignition to Measure Unburned Carbon In Fly Ash
,”
Fuel
, Vol. 
74
, No. 
4
,
1995
, pp. 
570
574
, https://doi.org/10.1016/0016-2361(95)98360-Q
26.
Fan
,
M.
and
Brown
,
R.C.
, “
Comparison of the Loss-On-Ignition and Thermogravimetric Analysis Techniques in Measuring Unburned Carbon in Coal Fly Ash
,”
Energy Fuels
, Vol. 
15
, No. 
6
,
2001
, pp. 
1414
1417
, https://doi.org/10.1021/ef0100496
27.
Chen
,
C.
,
Li
,
Q.
, and
Tao
,
C.L.
, “
Calculation of Un-Fired Carbon Content of Circulating Fluidized Bed Combustion Ash
,”
Asian J. Chem.
, Vol. 
24
,
2012
, pp. 
4461
4464
.
28.
ASTM D6316-09be1
Standard Test Method for Determination of Total, Combustible and Carbonate Carbon in Solid Residues from Coal and Coke
,
ASTM International
,
West Conshohocken, PA
,
2009
, www.astm.org
29.
Haiyu
,
L.
,
Houzhang
,
T.
,
Qiang
,
G.
,
Xuebin
,
W.
, and
Tongmo
,
X.
, “
Microwave Attenuation Characteristics of Unburned Carbon in Fly Ash
,”
Fuel
, Vol. 
89
, No. 
11
,
2010
, pp. 
3352
3357
, https://doi.org/10.1016/j.fuel.2010.02.029
30.
Ouazzane
,
A.K.
,
Castagner
,
J.L.
,
Jones
,
A.R.
, and
Ellahi
,
S.
, “
Design of an Optical Instrument to Measure the Carbon Content of Fly Ash
,”
Fuel
, Vol. 
81
, No. 
15
,
2002
, pp. 
1907
1911
, https://doi.org/10.1016/S0016-2361(02)00120-5
31.
Ctvrtnickova
,
T.
,
Mateo
,
M.-P.
,
Yafiez
,
A.
, and
Nicolas
,
G.
, “
Characterization of Coal Fly Ash Components by Laser-Induced Breakdown Spectroscopy
,”
Spectrochimica Acta Part B
, Vol. 
64
, No. 
10
,
2009
, pp. 
1093
1097
, https://doi.org/10.1016/j.sab.2009.07.032
32.
El-Jazairi
,
B.
and
Illston
,
J.M.
, “
A Simultaneous Semi-Isothermal Method of Thermogravimetry and Derivative Thermogravimetry, and its Application to Cement Pastes
,”
Cem. Concr. Res.
, Vol. 
7
, No. 
3
,
1977
, pp. 
247
257
, https://doi.org/10.1016/0008-8846(77)90086-2
33.
Földvári
,
M.
,
Handbook of Thermogravimetric System of Minerals and its Use in Geological Practice
, Volume
213
,
Geological Institute of Hungary
,
Budapest
,
2011
.
34.
ASTM D7348-13
Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues
,
ASTM International
,
West Conshohocken, PA
,
2013
, www.astm.org
35.
Kim
,
T.
and
Olek
,
J.
, “
Effects of Sample Preparation and Interpretation of Thermogravimetric Curves on Calcium Hydroxide in Hydrated Pastes and Mortars
,” Transportation Research Record: Journal of the Transportation Research Board,
Washington, D.C
.,
2012
, Volume
2290
, pp. 
10
18
, https://doi.org/10.3141/2290-02
36.
National Institute of Standards and Technology (NIST) Chemistry WebBook, https://web.archive.org/web/20170222193747/https://webbook.nist.gov/chemistry/, Accessed on Feb 22, 2017.
37.
Hitachi High-tech Science Corporation
Application Brief on Thermal Analysis of Gypsum
, TA No. 22,
1985
, https://web.archive.org/web/20170222192745/https://www.hitachi-hightech.com/global/products/science/appli/ana/thermal/, Accessed on Feb 22, 2017.
38.
Ru-fei
,
W.
,
Da-qiang
,
C.
,
Ling-ling
,
Z.
, and
Yuan-yuan
,
B.
, “
Staged Reaction Kinetics and Characteristics of Iron Oxide Direct Reduction by Carbon
,”
Int. J. Min. Met. Mater.
, Vol. 
22
, No. 
10
,
2015
, pp. 
1025
1032
, https://doi.org/10.1007/s12613-015-1164-1
39.
Scrivener
,
K.
,
Snellings
,
R.
, and
Lothenbach
,
B.
, “
A Practical Guide to Microstructural Analysis of Cementitious Materials
,”
CRC Press
,
2015
, pp. 
177
211
.
40.
Swift
,
W.M.
,
Panek
,
A.F.
,
Smith
,
G.W.
, and
Vogel
,
G.J.
,
Decomposition of Calcium Sulfate, A Review of the Literature
,
Argonne National Laboratory
,
Argonne
,
1976
.
This content is only available via PDF.
You do not currently have access to this content.