Abstract

Vegetation retains soil suction, which significantly affects the shear strength characteristics of soil and slope stability. However, because of uncertainties (heterogeneous root distribution, spatial variability) associated with vegetated soil, probabilistic analysis on the hydro-mechanical properties of vegetated soil is a necessity. Moreover, mechanical (cohesion, c, angle of internal friction, ϕ) as well as hydrological properties (suction, ψ, water content, θw) are correlated in nature, and this has a significant effect on the reliability of geotechnical structures. However, these studies investigated the dependence structure of mechanical parameters only. The main objective of this study is to evaluate the dependence structure of both mechanical (c, ϕ) as well as hydrological (ψ, θw) parameters of homogeneously compacted vegetated soil on the basis of measured field data. This is done by using copula theory to map the copula density functions (copula probability distribution functions [PDFs]) of (c, ϕ(ψ, θw) to their respective marginal distributions (PDFs) in order to simulate their bivariate distributions. The novelty of this work further lies in analysis of time-dependent behavior of θw by generating its PDFs, utilizing the concept of average mutual information (AMI). Thus, the information attained in this study about the inherent behavior of hydro-mechanical parameters of soil can be further utilized to estimate the reliability of vegetated slopes under varying climatic conditions.

References

1.
Fredlund
,
D.G.
,
Morgenstern
,
N.R.
, and
Widger
,
R.A.
, “
The Shear Strength of Unsaturated Soils
,”
Can. Geotech. J.
, Vol. 
15
, No. 
3
,
1978
, pp. 
313
321
, https://doi.org/10.1139/t78-029
2.
Whitman
,
R.V.
, “
Evaluating Calculated Risk in Geotechnical Engineering
,”
J. Geotech. Eng.
, Vol. 
110
, No. 
2
,
1984
, pp. 
143
188
, https://doi.org/10.1061/(ASCE)0733-9410(1984)110:2(143)
3.
Phoon
,
K.K.
and
Kulhawy
,
F.H.
, “
Characterization of Geotechnical Variability
,”
Can. Geotech. J.
, Vol. 
36
, No. 
4
,
1999
, pp. 
612
624
, https://doi.org/10.1139/t99-038
4.
Duncan
,
J.M.
, “
Factors of Safety and Reliability in Geotechnical Engineering
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
126
, No. 
4
,
2000
, pp. 
307
316
, https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307)
5.
Christian
,
J.T.
, “
Geotechnical Engineering Reliability: How Well Do We Know What We Are Doing?
J. Geotech. Geoenviron. Eng.
, Vol. 
130
, No. 
10
,
2004
, pp. 
985
1003
, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(985)
6.
Griffiths
,
D.V.
and
Fenton
,
G.A.
, “
Probabilistic Slope Stability Analysis by Finite Elements
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
130
, No. 
5
,
2004
, pp. 
507
518
, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(507)
7.
Griffiths
,
D.V.
and
Lane
,
P.A.
, “
Slope stability analysis by finite elements
Geotechnique
, Vol. 
49
, No. 
3
,
1999
, pp. 
387
403
.
8.
Phoon
,
K.K.
, Ed.,
Reliability-Based Design in Geotechnical Engineering: Computations and Applications
,
CRC Press
,
Boca Raton, FL
, 2008.
9.
Griffiths
,
D.V.
,
Huang
,
J.
, and
Fenton
,
G.A.
, “
Probabilistic Infinite Slope Analysis
,”
Comput. Geotech.
, Vol. 
38
, No. 
4
,
2011
, pp. 
577
584
, https://doi.org/10.1016/j.compgeo.2011.03.006
10.
Tang
,
X.S.
,
Li
,
D.Q.
,
Rong
,
G.
,
Phoon
,
K.K.
, and
Zhou
,
C.B.
, “
Impact of Copula Selection on Geotechnical Reliability Under Incomplete Probability Information
,”
Comput. Geotech.
, Vol. 
49
,
2013
, pp. 
264
278
, https://doi.org/10.1016/j.compgeo.2012.12.002
11.
Li
,
D.Q.
,
Zhang
,
L.
,
Tang
,
X.S.
,
Zhou
,
W.
,
Li
,
J.H.
,
Zhou
,
C.B.
, and
Phoon
,
K.K.
, “
Bivariate Distribution of Shear Strength Parameters Using Copulas and Its Impact on Geotechnical System Reliability
,”
Comput. Geotech.
, Vol. 
68
,
2015
, pp. 
184
195
, https://doi.org/10.1016/j.compgeo.2015.04.002
12.
Zhang
,
J.
,
Tang
,
W.H.
, and
Zhang
,
L.M.
, “
Efficient Probabilistic Back-Analysis of Slope Stability Model Parameters
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
136
, No. 
1
,
2009
, pp. 
99
109
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000205
13.
Jiang
,
S.H.
,
Li
,
D.Q.
,
Cao
,
Z.J.
,
Zhou
,
C.B.
, and
Phoon
,
K.K.
, “
Efficient System Reliability Analysis of Slope Stability in Spatially Variable Soils Using Monte Carlo Simulation
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
141
, No. 
2
,
2014
, 04014096, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001227
14.
Kang
,
F.
,
Han
,
S.
,
Salgado
,
R.
, and
Li
,
J.
, “
System Probabilistic Stability Analysis of Soil Slopes Using Gaussian Process Regression with Latin Hypercube Sampling
,”
Comput. Geotech.
, Vol. 
63
,
2015
, pp. 
13
25
, https://doi.org/10.1016/j.compgeo.2014.08.010
15.
Vahedifard
,
F.
,
Leshchinsky
,
D.
,
Mortezaei
,
K.
, and
Lu
,
N.
, “
Effective Stress-Based Limit-Equilibrium Analysis for Homogeneous Unsaturated Slopes
,”
Int. J. Geomech.
, Vol. 
16
, No. 
6
,
2016
, D4016003, https://doi.org/10.1061/(ASCE)GM.1943-5622.0000554
16.
Ng
,
C.W.
and
Pang
,
Y.W.
, “
Influence of Stress State on Soil-Water Characteristics and Slope Stability
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
126
, No. 
2
,
2000
, pp. 
157
166
, https://doi.org/10.1061/(ASCE)1090-0241(2000)126:2(157)
17.
Fatahi
,
B.
,
2007
, “
Modelling of Influence of Matric Suction Induced by Native Vegetation on Sub-Soil Improvement
,” Ph.D. thesis,
University of Wollongong
, Wollongong, Australia.
18.
Hemmati
,
S.
,
Gatmiri
,
B.
,
Cui
,
Y.J.
, and
Vincent
,
M.
, “
Thermo-Hydro-Mechanical Modelling of Soil Settlements Induced by Soil-Vegetation-Atmosphere Interactions
Eng. Geol.
, Vol. 
139
,
2012
, pp. 
1
16
, https://doi.org/10.1016/j.enggeo.2012.04.003
19.
Garg
,
A.
,
Leung
,
A.K.
,
Ng
,
C.W. W.
, and
Hau
,
B.C. H.
, “
Effects of Plant Transpiration on Suction Distribution in a Vegetated Soil Slope
,” Unsaturated Soils: Research and Applications,
Springer
,
Berlin
,
2012
, pp. 
351
357
, 2012, https://doi.org/10.1007/978-3-642-31343-1_44
20.
Ng
,
C.W. W.
,
Woon
,
K.X.
,
Leung
,
A.K.
, and
Chu
,
L.M.
, “
Experimental Investigation of Induced Suction Distribution in a Grass Covered Soil
,”
Ecol. Eng.
, Vol. 
52
,
2013
, pp. 
219
223
, https://doi.org/10.1016/j.ecoleng.2012.11.013
21.
Garg
,
A.
,
Coo
,
J.L.
, and
Ng
,
C.W. W.
, “
Field Study on Influence of Root Characteristics on Soil Suction Distribution in Slopes Vegetated with Cynodon dactylon and Schefflera heptaphylla
,”
Earth Surf. Process. Landf.
, Vol. 
40
, No. 
12
,
2015
, pp. 
1631
1643
, https://doi.org/10.1002/esp.3743
22.
Garg
,
A.
,
Leung
,
A.K.
, and
Ng
,
C.W. W.
, “
Comparisons of Soil Suction Induced by Evapotranspiration and Transpiration of S. heptaphylla
,”
Can. Geotech. J.
, Vol. 
52
, No. 
12
,
2015
, pp. 
2149
2155
, https://doi.org/10.1139/cgj-2014-0425
23.
Garg
,
A.
and
Ng
,
C.W. W.
, “
Investigation of Soil Density Effect on Suction Induced Due to Root Water Uptake by Schefflera heptaphylla
,”
J. Plant Nutr. Soil Sci.
, Vol. 
178
, No. 
4
,
2015
, pp. 
586
591
, https://doi.org/10.1002/jpln.201400265
24.
Leung
,
A.K.
,
Garg
,
A.
, and
Ng
,
C.W. W.
, “
Effects of Plant Roots on Soil-Water Retention and Induced Suction in Vegetated Soil
,”
Eng. Geol.
, Vol. 
193
,
2015
, pp. 
183
197
, https://doi.org/10.1016/j.enggeo.2015.04.017
25.
Gadi
,
V.K.
,
Bordoloi
,
S.
,
Garg
,
A.
,
Kobayashi
,
Y.
, and
Sahoo
,
L.
, “
Improving and Correcting Unsaturated Soil Hydraulic Properties with Plant Parameters for Agriculture and Bioengineered Slopes
.”
Rhizosphere
, Vol. 
1
,
2016
, pp. 
58
78
, https://doi.org/10.1016/j.rhisph.2016.07.003
26.
Gan
,
J.K. M.
,
Fredlund
,
D.G.
, and
Rahardjo
,
H.
, “
Determination of the Shear Strength Parameters of an Unsaturated Soil Using the Direct Shear Test
,”
Can. Geotech. J.
, Vol. 
25
, No. 
3
,
1988
, pp. 
500
510
, https://doi.org/10.1139/t88-055
27.
Barker
,
D.H.
, “
The Way Ahead—Continuing and Future Developments in Vegetative Slope Engineering or Ecoengineering
,” Vegetation and Slopes: Stabilization, Protection and Ecology,
Thomas Telford Publishing
,
London
,
1995
, pp. 
238
255
, https://doi.org/10.1680/vasspae.20313.0025
28.
Simon
,
A.
and
Collison
,
A.
, “
Quantifying the Mechanical and Hydrologic Effects of Riparian Vegetation on Streambank Stability
,”
Earth Surf. Process. Landf.
, Vol. 
27
, No. 
5
,
2002
, pp. 
527
546
, https://doi.org/10.1002/esp.325
29.
Pollen
,
N.
,
Simon
,
A.
, and
Collison
,
A.
, “Advances in Assessing the Mechanical and Hydrologic Effects of Riparian Vegetation on Streambank Stability,” Riparian Vegetation and Fluvial Geomorphology, American Geophysical Union,
2004
, pp. 
125
139
, https://doi.org/10.1029/008WSA10
30.
Pollen-Bankhead
,
N.
and
Simon
,
A.
, “
Hydrologic and Hydraulic Effects of Riparian Root Networks on Streambank Stability: Is Mechanical Root-Reinforcement the Whole Story?
Geomorphology
, Vol. 
116
, No. 
3
,
2010
, pp. 
353
362
, https://doi.org/10.1016/j.geomorph.2009.11.013
31.
Allen
,
R.G.
,
Pereira
,
L.S.
,
Raes
,
D.
, and
Smith
,
M.
, “
Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56
,”
FAO, Rome
, Vol. 
300
, No. 
9
,
1998
, D05109.
32.
Malkawi
,
A.I. H.
,
Hassan
,
W.F.
, and
Abdulla
,
F.A.
, “
Uncertainty and Reliability Analysis Applied to Slope Stability
,”
Struct. Safety
, Vol. 
22
, No. 
2
,
2000
, pp. 
161
187
, https://doi.org/10.1016/S0167-4730(00)00006-0
33.
Zhu
,
H.
and
Zhang
,
L.M.
, “
Evaluating Suction Profile in a Vegetated Slope Considering Uncertainty in Transpiration
,”
Comput. Geotech.
, Vol. 
63
,
2015
, pp. 
112
120
, https://doi.org/10.1016/j.compgeo.2014.09.003
34.
Ishak
,
M.F.
,
Ali
,
N.
, and
Kassim
,
A.
, “
Tree Induce Suction for Slope Sustainability
,”
Appl. Mech. Mater.
, Vol. 
170
, pp. 
1334
1338
, https://doi.org/10.4028/www.scientific.net/AMM.170-173.1334
35.
Heppell
,
J.
,
Payvandi
,
S.
,
Zygalakis
,
K.C.
,
Smethurst
,
J.A.
,
Fliege
,
J.
, and
Roose
,
T.
, “
Validation of a Spatial–Temporal Soil Water Movement and Plant Water Uptake Model
,”
Geotechnique
, Vol. 
64
, No. 
7
,
2014
, pp. 
526
539
, https://doi.org/10.1680/geot.13.P.142
36.
Hazra
,
B.
, Gadi, V.,
Garg
,
A.
,
Ng
,
C.W. W.
, and
Das
,
G.K.
, “
Probabilistic Analysis of Suction in Homogeneously Vegetated Soils
,”
Catena
, Vol. 
149
,
2017
, pp. 
394
401
, https://doi.org/10.1016/j.catena.2016.10.014
37.
Li
,
D.Q.
,
Tang
,
X.
,
Zhou
,
C.
, and
Phoon
,
K.K.
, “
Uncertainty Analysis of Correlated Non-normal Geotechnical Parameters Using Gaussian Copula
,”
Sci. China Tech. Sci.
, Vol. 
55
, No. 
11
,
2012
, pp. 
3081
3089
, https://doi.org/10.1007/s11431-012-4937-z
38.
Tang
,
X.S.
,
Li
,
D.Q.
,
Zhou
,
C.B.
,
Phoon
,
K.K.
, and
Zhang
,
L.M.
, “
Impact of Copulas for Modelling Bivariate Distributions on System Reliability
,”
Struct. Safety
, Vol. 
44
,
2013
, pp. 
80
90
, https://doi.org/10.1016/j.strusafe.2013.06.004
39.
Tang
,
X.S.
,
Li
,
D.Q.
,
Rong
,
G.
,
Phoon
,
K.K.
, and
Zhou
,
C.B.
, “
Impact of Copula Selection on Geotechnical Reliability Under Incomplete Probability Information
,”
Comput. Geotech.
, Vol. 
49
,
2013
, pp. 
264
278
, https://doi.org/10.1016/j.compgeo.2012.12.002
40.
Wu
,
X.Z.
, “
Probabilistic Slope Stability Analysis by a Copula-Based Sampling Method
,”
Comput. Geosci.
, Vol. 
17
, No. 
5
,
2013
, pp. 
739
755
, https://doi.org/10.1007/s10596-013-9353-3
41.
Wu
,
X.Z.
, “
Trivariate Analysis of Soil Ranking-Correlated Characteristics and Its Application to Probabilistic Stability Assessments in Geotechnical Engineering Problems
,”
Soils Found.
, Vol. 
53
, No. 
4
,
2013
, pp. 
540
556
, https://doi.org/10.1016/j.sandf.2013.06.006
42.
Wu
,
X.Z.
, “
Modelling Dependence Structures of Soil Shear Strength Data with Bivariate Copulas and Applications to Geotechnical Reliability Analysis
,”
Soils Found.
, Vol. 
55
, No. 
5
,
2015
, pp. 
1243
1258
, https://doi.org/10.1016/j.sandf.2015.09.023
43.
Cover
,
T.M.
and
Thomas
,
J.A.
,
Elements of Information Theory,
2nd ed.,
Wiley-Interscience
,
2006
.
44.
Cover
,
T.M.
and
Thomas
,
J.A.
, “
An Efficient Algorithm for the Computation of Average Mutual Information: Validation and Implementation in Matlab
,”
J. Math. Psych.
, Vol. 
61
,
2014
, pp. 
45
59
, https://doi.org/10.1016/j.jmp.2014.09.001
45.
Phoon
,
K.K.
,
Santoso
,
A.
, and
Quek
,
S.T.
, “
Probabilistic Analysis of Soil-Water Characteristic Curves
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
136
, No. 
3
,
2010
, pp. 
445
455
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000222
46.
Bhattacharya
,
B.
and
Solomatine
,
D.P.
, “
Neural Networks and M5 Model Trees in Modelling Water Level–discharge Relationship
,”
Neurocomput.
, Vol. 
63
,
2005
, pp. 
381
396
. https://doi.org/10.1016/j.neucom.2004.04.016
47.
May
,
R.J.
,
Dandy
,
G.C.
,
Maier
,
H.R.
, and
Nixon
,
J.B.
, “
Application of Partial Mutual Information Variable Selection to ANN Forecasting of Water Quality in Water Distribution Systems
,”
Environ. Model. Softw.
, Vol. 
23
, No. 
10
,
2008
, pp. 
1289
1299
, https://doi.org/10.1016/j.envsoft.2008.03.008
48.
Lateh
,
H.
,
Avani
,
N.
, and
Bibalani
,
G.H.
, “
Root Tensile Strength Variations in Inter and Intra Species in Rainforest
,” presented at International Conference on Chemical, Civil and Environmental Engineering (CCEE’2014), Singapore, Nov 18–19, 2014, International Institute of Chemical, Biological and Environmental Engineering, https://doi.org/https://www.iicbe.org/ pp. 
50
54
.
49.
Khan
,
Y.A.
and
Lateh
,
H.
, “
Plant Root Reinforcement Against Local Failure Mechanism of Natural Slope
,” Engineering Geology for Society and Territory,
Springer International Publishing
,
2015
, Vol. 
2
, pp. 
1275
1280
.
50.
Fredlund
,
D.G.
and
Rahardjo
,
H.
,
Soil Mechanics for Unsaturated Soils
,
John Wiley & Sons
,
1993
, https://doi.org/10.1002/9780470172759
51.
Fredlund
,
D.G.
and
Wong
,
D.
, “
Calibration of Thermal Conductivity Sensors for Measuring Soil Suction
,”
Geotech. Test. J.
, Vol. 
12
, No. 
3
,
1989
, pp. 
188
194
, https://doi.org/10.1520/GTJ10967J
52.
Nelsen
,
R.B.
,
An Introduction to Copulas
, 2nd ed.,
Springer Science Business Media
,
NY
,
2006
.
53.
Zhan
,
T.L.
,
Ng
,
C.W.
, and
Fredlund
,
D.G.
, “
Field Study of Rainfall Infiltration into a Grassed Unsaturated Expansive Soil Slope
,”
Can. Geotech. J.
, Vol. 
44
, No. 
4
,
2007
, pp. 
392
408
, https://doi.org/10.1139/t07-001
54.
Rahardjo
,
H.
,
Satyanaga
,
A.
,
Leong
,
E.C.
,
Santoso
,
V.A.
, and
Ng
,
Y.S.
, “
Performance of an Instrumented Slope Covered with Shrubs and Deep-Rooted Grass
,”
Soils Found.
, Vol. 
54
, No. 
3
,
2014
, pp. 
417
425
, https://doi.org/10.1016/j.sandf.2014.04.010
55.
Ang
,
A.H. S.
and
Tang
,
W.H.
,
Probability Concepts in Engineering Planning and Design
,
John Wiley & Sons Inc
,
1984
.
56.
Haldar
,
A.
and
Mahadevan
,
S.
,
Probability, Reliability, and Statistical Methods in Engineering Design
, Vol. 
1
,
Wiley
,
NY
,
2000
.
57.
Huat
,
B.B.
,
Ali
,
F.H.
, and
Low
,
T.H.
, “
Water Infiltration Characteristics of Unsaturated Soil Slope and its Effect on Suction and Stability
,”
Geotech. Geol. Eng.
, Vol. 
24
, No. 
5
,
2006
, pp. 
1293
1306
, https://doi.org/10.1007/s10706-00501881-8
58.
Scholl
,
P.
,
Leitner
,
D.
,
Kammerer
,
G.
,
Loiskandl
,
W.
,
Kaul
,
H.P.
, and
Bodner
,
G.
, “
Root Induced Changes of Effective 1D Hydraulic Properties in a Soil Column
,”
Plant Soil
, Vol. 
381
, No. 
1–2
,
2014
, pp. 
193
213
, https://doi.org/10.1007/s11104-014-2121-x
59.
Leung
,
A.K.
,
Garg
,
A.
,
Coo
,
J.L.
,
Ng
,
C.W. W.
, and
Hau
,
B.C. H.
, “
Effects of the Roots of Cynodon dactylon and Schefflera heptaphylla on Water Infiltration Rate and Soil Hydraulic Conductivity
,”
Hydrol. Process.
, Vol. 
29
, No. 
15
,
2015
, pp. 
3342
3354
, https://doi.org/10.1002/hyp.10452
60.
Ng
,
C.W. W.
,
Ni
,
J.J.
,
Leung
,
A.K.
, and
Wang
,
Z.J.
, “
A New and Simple Water Retention Model for Root-Permeated Soils
,”
Géotechnique Lett
, Vol. 
6
, No. 
1
,
2016
, pp. 
106
111
, https://doi.org/10.1680/jgele.15.00187
This content is only available via PDF.
You do not currently have access to this content.