Abstract

As part of an ongoing investigation on the behavior of the brittle cemented sensitive clays of eastern Canada, static penetrometer and vane shear tests had to be performed in the laboratory. Because it was impossible to sample undisturbed blocks of clay of the necessary size, an artificial model material was developed to simulate the response of sensitive clays, namely, brittle response at low stresses and loss of strength upon remolding. The model material consists of a mixture of kaolinite, bentonite, portland cement, and water. Two mixes were produced: a softer 6.25 % cement content and a stiffer 14 % cement content. It is shown that the materials are characterized by stress-strain behaviors similar to those of soft to medium sensitive clays. It is also shown that the artificially bonded materials simulate quite well other mechanical properties of sensitive clays of eastern Canada, such as high water contents and void ratios; brittle failure at low confining pressures; high G u/Su ratios, where Gu=shear modulus and Su=undrained shear strength; and severe collapse of the structure for vertical effective stresses in excess of the materials’ preconsolidation pressures. Specimens cured 21 days were used successfully for laboratory indentation, vane shear, and unconfined and triaxial compression tests, as well as oedometer tests. In addition, the variation of the undrained shear strength of the 14 % cement content specimens was followed for a maximum curing period of one year, by means of vane shear tests and unconfined compression tests.

References

1.
Mitchell
,
J.K.
, “
Soil Improvement Methods and Their Applications in Civil Engineering
,” presented at the 16th H. M. Shaw Lecture, Department of Civil Engineering, North Carolina State University, Raleigh, NC, April 24, 1981, pp. 132.
2.
Mitchell
,
J.K.
and
Soga
,
K.
,
Fundamentals of Soil Behavior
, 3rd Ed.,
John Wiley and Sons
,
Hoboken, New Jersey
, 2005.
3.
Broms
,
B.B.
, “Stabilization of Soft Clay with Lime Columns,”
Proceedings of the Seminar on Soil Improvement and Construction Techniques in Soft Ground
,
Nanyang Technological Institute
,
Singapore
,
1984
, pp. 
120
133
.
4.
Broms
,
B.B.
, “Stabilization of Soft Clay with Lime and Cement Columns in Southeast Asia,”
Applied Research Project RP10/83
,
Nanyang Technical Institute
,
Singapore
,
1986
.
5.
Lorenzo
,
G.A.
and
Bergado
,
D.T.
, “
Fundamental Parameters of Cement-Admixed Clay—New Approach
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
130
, No. 
10
,
2004
, pp. 
1042
1050
.
6.
Kamon
,
M.
and
Bergado
,
D.T.
, “
Ground Improvement Techniques
,” Proceeding of 9th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Bangkok, Thailand, 1991, pp. 
526
534
.
7.
Nagaraj
,
T.S.
,
Miura
,
N.
,
Yaligar
,
P.
, and
Yamadera
,
A.
, “
Predicting Strength Development by Cement Admixture Based on Water Content
,” presented at IS-Tokyo 96, 2nd Int. Conf. on Ground Improvement Geosystems, Grouting and Deep Mixing, Tokyo, Japan, May 14–17, 1996, Vol. 
1
, pp. 
131
436
.
8.
Uddin
,
K.
,
Balasubramaniam
,
A.
, and
Bergado
,
D.
, “
Engineering Behavior of Cement-Treated Bangkok Soft Clay
,”
Can. Geotech. J.
, Vol. 
28
, No. 
1
,
1997
, pp. 
89
119
.
9.
Bergado
,
D.T.
,
Ruenkrairergsa
,
T.
,
Taesiri
,
Y.
, and
Balasubramaniam
,
A.S.
, “
Deep Soil Mixing Used to Reduce Embankment Settlement
,”
Ground Improvement Journal
, Vol. 
3
, No. 
3
,
1999
, pp. 
145
162
.
10.
Kasama
,
K.
,
Ochiai
,
H.
, and
Yasufuku
,
N.
, “
On the Stress-Strain Behaviour of Lightly Cemented Clay Based on an Extended Critical State Concept
,”
Soils Found.
, Vol. 
40
, No. 
5
,
2000
, pp. 
37
47
.
11.
Nagaraj
,
T.S.
and
Miura
,
N.
,
Soft Clay Behavior Analysis and Assessment
,
A. A. Balkema, Rotterdam
,
The Netherlands
,
2001
.
12.
Miura
,
N.
,
Horpibulsuk
,
S.
, and
Nagaraj
,
T.S.
, “
Engineering Behaviour of Cement Stabilized Clay at High Water Content
,”
Soils Found.
, Vol. 
41
, No. 
5
,
2001
, pp. 
33
45
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000951#sthash.X3Mjsg6F.dpuf
13.
Yin
,
J.-H.
, “
Stress–Strain-Strength Characteristics of Soft Hong Kong Marine Deposits Without or With Cement Treatment
,”
Lowland Technology International
, Vol. 
3
, No. 
1
,
2001
, pp. 
1
13
.
14.
Chew
,
S.H.
,
Kamruzzaman
,
A.H. M.
, and
Lee
,
F.H.
, “
Physicochemical and Engineering Behavior of Cement Treated Clays
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
130
, No. 
7
,
2004
, pp. 
696
706
, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(696)#sthash.6WrHRfUX.dpuf
15.
Horpibulsuk
,
S.
,
Bergado
,
D.
, and
Lorenzo
,
G.
, “
Compressibility of Cement-Admixed Clays at High Water Content
,”
Géotechnique
, Vol. 
54
, No. 
2
,
2004
, pp. 
151
154
, https://doi.org/10.1680/geot.2004.54.2.151
16.
Kamruzzaman
,
A.
,
Chew
,
S.
, and
Lee
,
F.
, “
Structuration and Destructuration Behavior of Cement-Treated Singapore Marine Clay
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
135
, No. 
4
,
2009
, pp. 
573
589
.
17.
Croft
,
J.B.
, “
The Influence of Soil Mineralogical Composition on Cement Stabilization
,”
Géotechnique
, Vol. 
17
, No. 
1
,
1967
, pp. 
117
135
, https://doi.org/10.1680/geot.1967.17.2.119
18.
Bergado
,
D.T.
,
Anderson
,
L.R.
,
Miura
,
N.
, and
Balasubramaniam
,
A.S.
,
Soft Ground Improvement: in Lowland and Other Environments
,
ASCE Press
,
New York, NY
,
1996
, pp. 427.
19.
Bhattacharja
,
S.
and
Bhatty
,
J.I.
, “
Comparative Performance of Portland Cement and Lime Stabilization of Moderate to High Plasticity Clay Soils
,” PCA R&D Serial No. 2435,
Portland Cement Association
,
Skokie, IL
, 21 p.,
2003
.
20.
Horpibulsuk
,
S.
,
Miura
,
N.
, and
Nagaraj
,
T.S.
, “
Assessment of Strength Development in Cement-Admixed High Water Content Clays with Abrams’ Law as a Basis
,”
Géotechnique
, Vol. 
53
, No. 
4
,
2003
, pp. 
439
444
, https://doi.org/10.1680/geot.2003.53.4.439
21.
Horpibulsuk
,
S.
,
Miura
,
N.
, and
Nagaraj
,
T.S.
, “
Clay-Water/Cement Ratio Idently for Cemented Admixed Soft Clays
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
131
, No. 
2
,
2005
, pp. 
187
192
, https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(187)#sthash.dJhnej4d.dpuf
22.
Lee
,
F.H.
,
Lee
,
Y.
,
Chew
,
S.H.
, and
Yong
,
K.W.
, “
Strength amd Modulus of Marine Clay-Cement Mixes
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
131
, No. 
2
,
2005
, pp. 
178
186
, https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(178)#sthash.9MFBw7TX.dpuf
23.
Horpibulsuk
,
S.
,
Rachan
,
R.
,
Chinkulkijniwat
,
A.
,
Raksachon
,
Y.
, and
Suddeepong
,
A.
, “
Analysis of Strength Development in Cement-Stabilized Silty Clay from Microstructural Considerations
,”
Constr. Build. Mater.
, Vol. 
24
, No. 
10
,
2010
, pp. 
2011
2021
, https://doi.org/10.1016/j.conbuildmat.2010.03.011
24.
Quiroga
,
A.J.
,
Muraleetharan
,
K.K.
,
Cerato
,
A.B.
, and
Miller
,
G.A.
, “
Stress-Strain Behavior of Cement-Improved Clays
,” ASCE Geotechnical Special Publication,
San Antonio, TX
, March 17–21,
2015
, https://doi.org/10.1061/9780784479087.216
25.
Tremblay
,
H.
,
Leroueil
,
S.
, and
Locat
,
J.
, “
Mechanical Improvement and Vertical Yield Stress Prediction of Clayey Soils from Eastern Canada Treated with Lime or Cement
,”
Can. Geotech. J.
, Vol. 
38
, No. 
3
,
2001
, pp. 
567
579
, https://doi.org/10.1139/t00-119
26.
Sasanian
,
S.
,
2011
, “
The Behavior of Cement Stabilized Clay at High Water Contents
,” Ph.D. thesis,
University of Western Ontario
, Ontario, Canada.
27.
Burland
,
J.B.
, “
On the Compressibility And shear Strength of Natural Clays
,”
Géotechnique
, Vol. 
40
, No. 
3
,
1990
, pp. 
329
378
, https://doi.org/10.1680/geot.1990.40.3.329
28.
Mitchell
,
R.J.
, “
On the Yielding and Mechanical Strength of Leda Clays
,”
Can. Geotech. J.
, Vol. 
7
, No. 
3
,
1970
, pp. 
297
312
, https://doi.org/10.1139/t70-036
29.
Tavenas
,
F.
,
Roy
,
M.
, and
Rochelle
,
P.L.
, “
An Artificial Material for Simulating Champlain Clays
,”
Can. Geotech. J.
, Vol. 
10
, No. 
3
,
1973
, pp. 
489
503
.
30.
Silvestri
,
V.
and
Fahmy
,
Y.
, “
Influence of Apex Angle on Cone Penetration Factors in Clay
,”
Can. Geotech. J.
, Vol. 
18
, No. 
3
,
1995
, pp. 
315
323
, https://doi.org/10.1520/GTJ11000J
31.
Silvestri
,
V.
,
Dakroub
,
H.
, and
Fahmy
,
Y.
, “
Analysis of Cone Penetration and Indentation Tests in Clayey Soils
,”
Can. Geotech. J.
, Vol. 
34
, No. 
2
,
1997
, pp. 
254
263
, https://doi.org/10.1139/t96-115
32.
Wahlberg
,
A.
, “
Brinell’s Method of Determining Hardness and Other Properties of Iron and Steel
,”
Journal of the Iron and Steel Institute, London
, Vol. 
59
, No. 
1
,
1901
, pp. 
243
298
.
33.
Tabor
,
D.
,
The Hardness of Metals
,
Oxford Univiversity Press
,
London
,
1951
.
34.
Hutchings
,
I.M.
, “
The Contributions of David Tabor to the Science of Indentation Hardness
,”
J. Mater. Res.
, Vol. 
24
, No. 
3
,
2009
, pp. 
581
589
, https://doi.org/10.1557/jmr.2009.0085
35.
Bishop
,
R.F.
,
Hill
,
R.
, and
Mott
,
N.F.
, “
The Theory of Indentation and Hardness Tests
,” Proceedings of the Physical Society, London, Vol. 
57
, No. 
3
,
1945
, pp. 
147
159
, https://doi.org/10.1088/0959-5309/57/3/301
36.
Hill
,
R.
,
Lee
,
E.H.
, and
Tupper
,
S.J.
, “
The Theory of Wedge Indentation of Ductile Materials
,”
Proceedings of the Royal Society of London
. Series A., Vol. 
188
, No. 
1013
,
1947
, pp. 
273
289
, https://doi.org/10.1098/rspa.1947.0009
37.
Hill
,
R.
,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
London
,
1950
.
38.
Atkins
,
A.
and
Tabor
,
D.
, “
On ‘Indenting with Pyramids, ’
Int. J. Mech. Sci.
, Vol. 
7
, No. 
9
,
1965
, pp. 
647
650
.
39.
Atkins
,
A.
and
Tabor
,
D.
, “
Plastic Indentation in Metals with Cones
,”
J. Mech. Phys. Solids
, Vol. 
13
, No. 
3
,
1965
, pp. 
149
164
, https://doi.org/10.1016/0022-5096(65)90018-9
40.
Johnson
,
W.
,
Mahtab
,
F.
, and
Williams
,
A.
, “
Experiments Concerning Geometric Similarity in Indentation
,”
Int. J. Mech. Sci.
, Vol. 
7
, No. 
6
,
1965
, pp. 
389
398
, https://doi.org/10.1016/0020-7403(65)90052-4
41.
Sneddon
,
I.N.
, “
The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile
,”
Int. J. Mech. Sci.
, Vol. 
3
, No. 
1
,
1965
, pp. 
47
57
, https://doi.org/10.1016/0020-7225(65)90019-4
42.
Fischer-Cripps
,
A.C.
,
Nanoindentation
,
Springer
,
New York
,
2011
.
43.
Oliver
,
W.C.
and
Pharr
,
G.M.
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
, Vol. 
7
, No. 
6
,
1992
, pp. 
1564
1583
, https://doi.org/10.1557/JMR.1992.1564
44.
Fahmy
,
Y.
,
1993
, “
The Impact of Varying the Apex Angle on a Static Cone Penetration Measurements in Simulated Champlain Clays
,” M.Sc. A. thesis,
Department of Civil Engineering, Ecole Polytechnique
, Montreal, Quebec, Canada.
45.
ASTM D854-14
Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer
,
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org.
46.
ASTM D4648/D4648M-16
Standard Test Methods for Laboratory Miniature Vane Shear Test for SaturatedFine-Grained Clayey Soil
,
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org.
47.
ASTM D2166/D2166M-16
Standard Test Method for Unconfined Compressive Strength of Cohesive Soil
,
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org.
48.
ASTM D2435/D2435M-11
Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading
,
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org.
49.
ASTM D2216-10
Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
,
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org.
50.
ASTM D4318-10e1
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
,
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org.
51.
ASTM D422-63(2007)e2
Standard Test Method for Particle-Size Analysis of Soils (Withdrawn 2016)
,
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org.
52.
Kjekstad
,
O.
,
Lunne
,
T.
, and
Clausen
,
C.J.
, “
Comparison Between In Situ Cone Resistance and Laboratory Strength for Overconsolidated North Sea Clays
,”
Mar. Georesour. Geotec.
, Vol. 
3
, No. 
1
,
1978
, pp. 
23
36
.
53.
Lunne
,
T.
and
Kleven
,
A.
, “
Role of CPT in North Sea Foundation Engineering
,” session at the
ASCE National Convention: Cone penetration Testing and Experience
, St. Louis, MO, October 26–30, 1981, American Society of Civil Engeneers, pp. 
76
107
.
54.
Lunne
,
T.
,
Robertson
,
P.K.
, and
Powell
,
J.J. M.
,
Cone Penetration Testing
,
Spon Press
,
London
,
1997
.
55.
Ladanyi
,
B.
, “A Study of Deep Penetration Tests in Sensitive Clays,”
Internal Report No. 360
,
Division of Building Reseach, National Research Council of Canada
,
Ottawa
: 56 pp.,
1968
.
56.
Bazant
,
Z.P.
, “
Scaling Laws in Mechanics of Failure
,”
J. Eng. Mech.
, Vol. 
119
, No. 
9
,
1993
, pp. 
1828
1844
, https://doi.org/10.1061/(ASCE)0733-9399(1993)119:9(1828)
This content is only available via PDF.
You do not currently have access to this content.