Abstract

In this study, the properties of rubberized concrete were examined and finite-element (FE) models were developed to investigate the accuracy of a current concrete material model in predicting the compressive behavior of rubberized concrete. The rubber particles, with a size of 1.18 mm were used at 0 %, 6 %, 12 %, and 18 % volume replacement of fine aggregate, keeping the proportions of gravel, water, and cement the same in all mixtures. Cylindrical and beam specimens were prepared and tested to evaluate the effect of rubber content on the density, compressive strength, elastic modulus, and damping ratio of the concrete. The results indicated that the damping ratio of rubberized concrete increased by 5.5 %, 27.8 %, and 64.8 % with rubber replacement of 6 %, 12 %, and 18 %, respectively. In addition to the experimental study, non-linear finite-element analysis was carried out using LS-DYNA software (Livermore Software Technology Corporation). The FE model developed in this paper was able to closely simulate the compressive behavior of the rubberized concrete specimens. The stiffness, compressive strength, volumetric response, and the dilation behavior obtained using the FE analysis agreed well with the values measured in the experimental work. The results show that the current concrete material model can be considered for rubberized concrete, provided that the compressive strength is modified to account for the reduction in strength caused by the added rubber.

References

1.
Ling
,
T. C.
, “
Effects of Compaction Method and Rubber Content on the Properties of Concrete Paving Blocks
,”
Constr. Build. Mater.
, Vol.
28
, No.
1
,
2012
, pp.
164
175
, https://doi.org/10.1016/j.conbuildmat.2011.08.069
2.
Ling
,
T.
,
Nor
,
H. M.
,
Hainin
,
M. R.
, and
Lim
,
S.-K.
, “
Long-Term Strength of Rubberised Concrete Paving Blocks
,”
Constr. Mater.
, Vol.
163
, No.
1
,
2010
, pp.
19
26
, https://doi.org/10.1680/coma.2010.163.1.19
3.
Schimizze
,
R. R.
,
Nelson
,
J. K.
,
Amirkhanian
,
S. N.
, and
Murden
,
J. A.
, “
Use of Waste Rubber in Light-Duty Concrete Pavements
,”
Civil Engineering Database
, ASCE, Reston, VA,
1994
, pp.
367
374
.
4.
Kaloush
,
K.
,
Way
,
G.
, and
Zhu
,
H.
, “
Properties of Crumb Rubber Concrete
,”
J. Transport. Res. Board
, Vol.
1914
,
2005
, pp.
8
14
, https://doi.org/10.3141/1914-02
5.
Bala
,
A.
,
Sehgal
,
V.
, and
Saini
,
B.
, “
Effect of Flyash and Waste Rubber on Properties of Concrete Composite
,”
Concrete Res. Lett.
, Vol.
5
, No.
3
,
2014
, pp.
842
847
.
6.
Topcu
,
I.
and
Avcular
,
N.
, “
Collision Behaviours of Rubberized Concrete
,”
Cement Concrete Res.
, Vol.
27
, No.
12
,
1997
, pp.
1893
1898
, https://doi.org/10.1016/S0008-8846(97)00204-4
7.
Topcu
,
I.
and
Avcular
,
N.
, “
Analysis of Rubberized Concrete as a Composite Material
,”
Cement Concrete Res.
, Vol.
27
, No.
8
,
1997
, pp.
1135
1139
, https://doi.org/10.1016/S0008-8846(97)00115-4
8.
Fattuhi
,
N.
and
Clark
,
L.
, “
Cement-Based Materials Containing Shredded Scrap Truck Tyre Rubber
,”
Constr. Build. Mater.
, Vol.
10
, No.
4
,
1996
, pp.
229
236
, https://doi.org/10.1016/0950-0618(96)00004-9
9.
Gadkar
,
S.
and
Rangaraju
,
P. R.
, “
The Effect of Crumb Rubber on Freeze–Thaw Durability of Portland Cement Concrete
,”
Adv. Civil Eng. Mater.
, Vol.
2
, No.
1
,
2013
, pp.
566
585
, https://doi.org/10.1520/ACEM20120057
10.
Ganjian
,
E.
,
Khorami
,
M.
, and
Maghsoudi
,
A. A.
, “
Scrap-Tyre-Rubber Replacement for Aggregate and Filler in Concrete
,”
Constr. Build. Mater.
, Vol.
23
, No.
5
,
2009
, pp.
1828
1836
, https://doi.org/10.1016/j.conbuildmat.2008.09.020
11.
Khatib
,
Z. K.
and
Bayomy
,
F. M.
, “
Rubberized Portland Cement Concrete
,”
J. Mater. Civil Eng.
, Vol.
11
, No.
3
,
1999
, pp.
206
213
, https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206)
12.
Nehdi
,
M.
and
Khan
,
A.
, “
Cementitious Composites Containing Recycled Tire Rubber: An Overview of Engineering Properties and Potential Applications
,”
Cement Concrete Aggr.
, Vol.
23
, No.
1
,
2001
, pp.
3
10
, https://doi.org/10.1520/CCA10519J
13.
Li
,
L.
,
Ruan
,
S.
, and
Zeng
,
L.
, “
Mechanical Properties and Constitutive Equations of Concrete Containing a Low Volume of Tire Rubber Particles
,”
Constr. Build. Mater.
, Vol.
70
,
2014
, pp.
291
308
, https://doi.org/10.1016/j.conbuildmat.2014.07.105
14.
Eldin
,
N. N.
and
Senouci
,
A. B.
, “
Rubber-Tire Particles as Concrete Aggregate
,”
J. Mater. Civil Eng.
, Vol.
5
, No.
4
,
1993
, pp.
478
496
, https://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478)
15.
Zheng
,
L.
,
Sharon Huo
,
X.
, and
Yuan
,
Y.
, “
Experimental Investigation on Dynamic Properties of Rubberized Concrete
,”
Constr. Build. Mater.
, Vol.
22
, No.
5
,
2008
, pp.
939
947
, https://doi.org/10.1016/j.conbuildmat.2007.03.005
16.
Topcu
,
I. B.
, “
The Properties of Rubberized Concretes
,”
Cement Concrete Res.
, Vol.
25
, No.
2
,
1995
, pp.
304
310
, https://doi.org/10.1016/0008-8846(95)00014-3
17.
Youssf
,
O.
,
Mills
,
J. E.
, and
Hassanli
,
R.
, “
Assessment of the Mechanical Performance of Crumb Rubber Concrete
,”
Constr. Build. Mater.
, Vol.
125
,
2016
, pp.
175
183
, https://doi.org/10.1016/j.conbuildmat.2016.08.040
18.
Onuaguluchi
,
O.
and
Panesar
,
D. K.
, “
Hardened Properties of Concrete Mixtures Containing Pre-Coated Crumb Rubber and Silica Fume
,”
J. Cleaner Prod.
, Vol.
82
,
2014
, pp.
125
131
, https://doi.org/10.1016/j.jclepro.2014.06.068
19.
Park
,
Y.
,
Abolmaali
,
A.
,
Kim
,
Y. H.
, and
Ghahremannejad
,
M.
, “
Compressive Strength of Fly Ash-Based Geopolymer Concrete With Crumb Rubber Partially Replacing Sand
,”
Constr. Build. Mater.
, Vol.
118
,
2016
, pp.
43
51
, https://doi.org/10.1016/j.conbuildmat.2016.05.001
20.
Park
,
Y.
,
Abolmaali
,
A.
,
Mohammadagha
,
M.
, and
Lee
,
S.
, “
Structural Performance of Dry-Cast Rubberized Concrete Pipes With Steel and Synthetic Fibers
,”
Constr. Build. Mater.
, Vol.
77
,
2015
, pp.
218
226
, https://doi.org/10.1016/j.conbuildmat.2014.12.061
21.
Ganesan
,
N.
,
Bharati
,
R.
, and
Shashikala
,
A. P.
, “
Behavior of Self-Consolidating Rubberized Concrete Beam-Column Joints
,”
ACI Material J.
, Vol.
110
, No.
6
,
2013
, pp.
697
704
.
22.
Xue
,
J.
and
Shinozuka
,
M.
, “
Rubberized Concrete: A Green Structural Material With Enhanced Energy-Dissipation Capability
,”
Constr. Build. Mater.
, Vol.
42
,
2013
, pp.
196
204
, https://doi.org/10.1016/j.conbuildmat.2013.01.005
23.
Pelisser
,
F.
,
Zavarise
,
N.
,
Longo
,
T. A.
, and
Bernardin
,
A. M.
, “
Concrete Made With Recycled Tire Rubber: Effect of Alkaline Activation and Silica Fume Addition
,”
J. Cleaner Prod.
, Vol.
19
, Nos.
6–7
,
2011
, pp.
757
763
, https://doi.org/10.1016/j.jclepro.2010.11.014
24.
Youssf
,
O.
,
ElGawady
,
M. A.
,
Mills
,
J. E.
, and
Ma
,
X.
, “
An Experimental Investigation of Crumb Rubber Concrete Confined by Fibre Reinforced Polymer Tubes
,”
Constr. Build. Mater.
, Vol.
53
,
2014
, pp.
522
532
, https://doi.org/10.1016/j.conbuildmat.2013.12.007
25.
Najim
,
K. B.
and
Hall
,
M. R.
, “
Mechanical and Dynamic Properties of Self-Compacting Crumb Rubber Modified Concrete
,”
Constr. Build. Mater.
, Vol.
27
, No.
1
,
2012
, pp.
521
530
, https://doi.org/10.1016/j.conbuildmat.2011.07.013
26.
Hernández-Olivares
,
F.
,
Barluenga
,
G.
,
Bollati
,
M.
, and
Witoszek
,
B.
, “
Static and Dynamic Behaviour of Recycled Tyre Rubber-Filled Concrete
,”
Cement Concrete Res.
, Vol.
32
, No.
10
,
2002
, pp.
1587
1596
, https://doi.org/10.1016/S0008-8846(02)00833-5
27.
Toutanji
,
H.
, “
Stress–Strain Characteristics of Concrete Columns Externally Confined With Advanced Fiber Composite Sheets
,”
ACI Mater. J.
, Vol.
96
, No.
3
,
1999
, pp.
397
404
.
28.
Smith
,
J. W.
,
Vibration of Structures: Applications in Civil Engineering Design
,
Chapman and Hall
,
London
,
1988
.
29.
AS3600
,
Concrete Structures
,
Standards Australia International
,
Sydney, Australia
,
2009
.
30.
AS3972
,
General Purpose and Blended Cements
,
Standards Australia
,
Sydney, NSW, Australia
,
2010
.
31.
ASTM C494/C494M,
Standard Specification for Chemical Admixtures for Concrete
,
ASTM International
,
West Conshohocken, PA
,
2001
, www.astm.org
32.
AS1012.1
,
Methods of Testing Concrete - Sampling of Concrete
,
Standards Australia
,
Sydney, NSW, Australia
,
2014
.
33.
AS1012.8.1
,
Methods for Sampling and Testing Aggregates, Method for Making and Curing Concrete - Compression and Indirect Tensile Test Specimens
,
Standards Australia
,
Sydney, NSW, Australia
,
2000
.
34.
AS1012.9
,
Methods of Testing Concrete - Compressive Strength Tests - Concrete, Mortar and Grout Specimens
,
Standards Australia
,
Sydney, NSW, Australia
,
2014
.
35.
Pacheco-Torgal
,
F.
,
Ding
,
Y.
, and
Jalali
,
S.
, “
Properties and Durability of Concrete Containing Polymeric Wastes (Tyre Rubber and Polyethylene Terephthalate Bottles): An Overview
,”
Constr. Build. Mater.
, Vol.
30
,
2012
, pp.
714
724
, https://doi.org/10.1016/j.conbuildmat.2011.11.047
36.
Xie
,
J.-H.
,
Guo
,
Y.-C.
,
Liu
,
L.-S.
, and
Xie
,
Z.-H.
, “
Compressive and Flexural Behaviours of a New Steel-Fibre-Reinforced Recycled Aggregate Concrete With Crumb Rubber
,”
Constr. Build. Mater.
, Vol.
79
,
2015
, pp.
263
272
, https://doi.org/10.1016/j.conbuildmat.2015.01.036
37.
De Brito
,
J.
and
Saikia
,
N.
, “
Recycled Aggregate in Concrete
,”
Use of Industrial, Construction and Demolition Waste
, 1st ed.,
Springer
,
London
,
2013
.
38.
AS1012.17
,
Methods for Testing Concrete, Determination of the Static Chord Modulus of Elasticity and Poisson's Ratio of Concrete Specimens
,
Standards Australia
,
Sydney, NSW, Australia
,
1997
.
39.
ACI318-08
,
Building Code Requirements for Structural Concrete
,
American Concrete Institute
,
Farmington Hills, MI
,
2008
.
40.
Chopra
,
A. K.
,
Dynamics of Structures: Theory and Applications to Earthquake Engineering
,
Prentice Hall
,
Upper Saddle River, NJ
,
2007
.
41.
LS-DYNA Keyword User's Manual
,”
Livermore Software Technology Corporation
,
Livermore, CA
,
2007
.
42.
Malvar
,
L.
,
Crawford
,
J.
, and
Morrill
,
K.
, “
K&C Concrete Material Model Release III: Automated Generation of Material Model Input
,” Technical Report TR-99-243, Karagozian and Case, Glendale, CA, August 18,
2000
.
43.
Schwer
,
L. E.
and
Malvar
,
L. J.
, “
Simplified Concrete Modeling With *Mat_Concrete_Damage_Rel3
,”
JRI LS-Dyna User Week
, Nagoya, Japan,
JRI Solutions
,
Tokyo, Japan
, August
2005
.
44.
Magallanes
,
J. M.
,
Wu
,
Y.
,
Malvar
,
L. J.
, and
Crawford
,
J. E.
, “
Recent Improvements to Release III of the K&C Concrete Model
,”
11th International LS-DYNA Users Conference
, Dearborn, MI,
2010
, pp.
6
8
.
45.
Markovich
,
N.
,
Kochavi
,
E.
, and
Ben-Dor
,
G.
, “
An Improved Calibration of the Concrete Damage Model
,”
Finite Elements Anal. Design
, Vol.
47
, No.
11
,
2011
, pp.
1280
1290
. https://doi.org/10.1016/j.finel.2011.05.008
46.
Malvar
,
L. J.
,
Crawford
,
J. E.
,
Wesevich
,
J. W.
, and
Simons
,
D.
, “
A Plasticity Concrete Material Model for DYNA3D
,”
Int. J. Impact Eng.
, Vol.
19
, Nos.
9–10
,
1997
, pp.
847
873
. https://doi.org/10.1016/S0734-743X(97)00023-7
This content is only available via PDF.
You do not currently have access to this content.