Abstract

The Powers-Brownyard model is an analytical tool that is widely used to quantify the volume of gel solids, gel pores, capillary water, and unhydrated cement during the hydration process. These parameters, specifically the capillary and gel pore volumes, are related to important hardened concrete properties, such as shrinkage, freeze-thaw, transport, and strength. While the Powers-Brownyard model has many applications, it does not provide detailed solid phase assemblage information, and it can only be used for ordinary portland cement. In contrast, thermodynamic modeling can predict solid phase assemblage for a wide range of cementitious binders, but does not provide information on the resulting pore structure. This work combined the Powers-Brownyard model, hydration kinetics, and thermodynamic calculations to predict capillary and gel porosity, chemical shrinkage, and volumes of all hydrated and unhydrated phases for plain cement pastes without the need for additional information such as pore size distributions. This new model has the advantages of both the Powers-Brownyard model and thermodynamic modeling, and is a powerful tool, which the authors envision to be used to further advance the understanding of durability of cementitious materials.

References

1.
Powers
,
T. C.
and
Brownyard
T. L.
, “
Studies of the Physical Properties of Hardened Portland Cement Paste
,”
Bulletin
, 22, Portland Cement Association, Chicago, IL (1948); reprinted from J. Amer. Concr. Inst. Proc., 43,
1947
, pp.
469
504
.
2.
Bentz
,
D. P.
, “
Influence of Water-to-Cement Ratio on Hydration Kinetics: Simple Models Based on Spatial Considerations
,”
Cem. Concr. Res.
, Vol.
36
, No.
2
,
2006
, pp.
238
244
. https://doi.org/10.1016/j.cemconres.2005.04.014
3.
Brunauer
,
S.
,
Odler
,
I.
, and
Yudenfreund
,
M.
, “
The New Model of Hardened Portland Cement Paste
,”
Highw. Res. Rec.
,
1970
, pp.
89
107
.
4.
Feldman
,
R.
and
Sereda
,
P.
, “
A New Model for Hydrated Portland Cement and its Practical Implications
,”
Eng. J.
, Vol.
53
, Nos.
8–9
,
1970
, pp.
53
59
.
5.
Hansen
,
T. C.
, “
Physical Structure of Hardened Cement Paste. A Classical Approach
,”
Mater. Struct.
, Vol.
19
, No.
6
,
1986
, pp.
423
436
. https://doi.org/10.1007/BF02472146
6.
Jennings
,
H. M.
,
Bullard
,
J. W.
,
Thomas
,
J. J.
,
Andrade
,
J. E.
,
Chen
,
J. J.
, and
Scherer
,
G. W.
, “
Characterization and Modeling of Pores and Surfaces in Cement Paste: Correlations to Processing and Properties
,”
J. Adv. Concr. Technol.
, Vol.
6
, No.
1
,
2008
, pp.
5
29
. https://doi.org/10.3151/jact.6.5
7.
Taylor
,
H. F.
,
Cement Chemistry
,
Thomas Telford
,
London
,
1997
.
8.
Brouwers
,
H.
, “
The Work of Powers and Brownyard Revisited: Part 1
,”
Cem. Concr. Res.
, Vol.
34
, No.
9
,
2004
, pp.
1697
1716
. https://doi.org/10.1016/j.cemconres.2004.05.031
9.
Brouwers
,
H.
, “
Chemical Reactions in Hydrated Ordinary Portland Cement Based on the Work by Powers and Brownyard
,” presented at the
15th Ibausil, International Conference on Building Materials (Internationale Baustofftagung)
, Weimar, Germany, September 24–27, 2003, pp. 1-0553–1-0566.
10.
Brouwers
,
H.
, “
The Work of Powers and Brownyard Revisited: Part 2
,”
Cem. Concr. Res.
, Vol.
35
, No.
10
,
2005
, pp.
1922
1936
. https://doi.org/10.1016/j.cemconres.2005.04.009
11.
Di Bella
,
C.
,
Wyrzykowski
,
M.
,
Griffa
,
M.
,
Termkhajornkit
,
P.
,
Chanvillard
,
G.
,
Stang
,
H.
,
Eberhardt
,
A.
, and
Lura
,
P.
, “
Application of Microstructurally-Designed Mortars for Studying Early-Age Properties: Microstructure and Mechanical Properties
,”
Cem. Concr. Res.
, Vol.
78
,
2015
, pp.
234
244
. https://doi.org/10.1016/j.cemconres.2015.08.001
12.
Pichler
,
B.
,
Hellmich
,
C.
,
Eberhardsteiner
,
J.
,
Wasserbauer
,
J.
,
Termkhajornkit
,
P.
,
Barbarulo
,
R.
, and
Chanvillard
,
G.
, “
Effect of Gel–Space Ratio and Microstructure on Strength of Hydrating Cementitious Materials: An Engineering Micromechanics Approach
,”
Cem. Concr. Res.
, Vol.
45
,
2013
, pp.
55
68
. https://doi.org/10.1016/j.cemconres.2012.10.019
13.
Todak
,
H.
,
Durability Assessments of Concrete Using Electrical Properties and Acoustic Emissions
,
Purdue University
,
West Lafayette, IN
,
2015
.
14.
Lura
,
P.
,
Jensen
,
O. M.
, and
van Breugel
,
K.
, “
Autogenous Shrinkage in High-Performance Cement Paste: An Evaluation of Basic Mechanisms
,”
Cem. Concr. Res.
, Vol.
33
,
2003
, pp.
223
232
. https://doi.org/10.1016/S0008-8846(02)00890-6
15.
Sant
,
G.
,
Lura
,
P.
, and
Weiss
,
J.
, “
Measurement of Volume Change in Cementitious Materials at Early Ages: Review of Testing Protocols and Interpretation of Results
,”
Transp. Res. Rec.
, Vol.
2006
, pp.
21
29
.
16.
Wyrzykowski
,
M.
and
Lura
,
P.
, “
The Effect of External Load on Internal Relative Humidity in Concrete
,”
Cem. Concr. Res.
, Vol.
65
,
2014
, pp.
58
63
. https://doi.org/10.1016/j.cemconres.2014.07.011
17.
Promentilla
,
M. A. B.
,
Sugiyama
,
T.
,
Hitomi
,
T.
, and
Takeda
,
N.
, “
Quantification of Tortuosity in Hardened Cement Pastes Using Synchrotron-Based X-Ray Computed Microtomography
,”
Cem. Concr. Res.
, Vol.
39
, No.
6
,
2009
, pp.
548
557
. https://doi.org/10.1016/j.cemconres.2009.03.005
18.
Suraneni
,
P.
,
Jafari Azad
,
V.
,
Isgor
,
O. B.
, and
Weiss
,
W. J.
, “
Calcium Oxychloride Formation in Pastes Containing Supplementary Cementitious Materials: Thoughts on the Role of Cement and Supplementary Cementitious Materials Reactivity
,”
Rilem Technical Lett.
, Vol.
1
,
2016
, pp.
24
30
. https://doi.org/10.21809/rilemtechlett.2016.7
19.
Suraneni
,
P.
,
Jafari Azad
,
V.
,
Isgor
,
O. B.
, and
Weiss
,
W. J.
, “
Deicing Salts and Durability of Concrete Pavements and Joints: Mitigating Calcium Oxychloride Formation
,”
Concr. Int.
, Vol.
38
, No.
4
,
2016
, pp.
48
54
.
20.
Santhanam
,
M.
,
Cohen
,
M. D.
, and
Olek
,
J.
, “
Sulfate Attack Research—Whither Now?
,”
Cem. Concr. Res.
, Vol.
31
, No.
6
,
2001
, pp.
845
851
. https://doi.org/10.1016/S0008-8846(01)00510-5
21.
Yonezawa
,
T.
,
Ashworth
,
V.
, and
Procter
,
R.
, “
Pore Solution Composition and Chloride Effects on the Corrosion of Steel in Concrete
,”
Corrosion
, Vol.
44
, No.
7
,
1988
, pp.
489
499
. https://doi.org/10.5006/1.3583967
22.
Jensen
,
O. M.
,
Hansen
,
P. F.
,
Coats
,
A. M.
, and
Glasser
,
F. P.
, “
Chloride Ingress in Cement Paste and Mortar
,”
Cem. Concr. Res.
, Vol.
29
, No.
9
,
1999
, pp.
1497
1504
. https://doi.org/10.1016/S0008-8846(99)00131-3
23.
Jensen
,
O. M.
and
Hansen
,
P. F.
, “
Water-Entrained Cement-Based Materials: I. Principles and Theoretical Background
,”
Cem. Concr. Res.
, Vol.
31
, No.
4
,
2001
, pp.
647
654
. https://doi.org/10.1016/S0008-8846(01)00463-X
24.
Igarashi
,
S.-I.
,
Kawamura
,
M.
, and
Watanabe
,
A.
, “
Analysis of Cement Pastes and Mortars by a Combination of Backscatter-Based SEM Image Analysis and Calculations Based on the Powers Model
,”
Cem. Concr. Compos.
, Vol.
26
, No.
8
,
2004
, pp.
977
985
. https://doi.org/10.1016/j.cemconcomp.2004.02.031
25.
Hansen
,
T.
, “
Recycled Aggregates and Recycled Aggregate Concrete Second State-of-the-Art Report Developments 1945–1985
,”
Mater. Struct.
, Vol.
19
, No.
3
,
1986
, pp.
201
246
. https://doi.org/10.1007/BF02472036
26.
Parrot
,
L.
and
Killoh
,
D.
, “
Prediction of Cement Hydration
,”
Br. Ceram. Proc.
, Vol.
35
,
1984
, pp.
41
53
.
27.
Lothenbach
,
B.
and
Winnefeld
,
F.
, “
Thermodynamic Modelling of the Hydration of Portland Cement
,”
Cem. Concr. Res.
, Vol.
36
, No.
2
,
2006
, pp.
209
226
. https://doi.org/10.1016/j.cemconres.2005.03.001
28.
Kulik
,
D. A.
,
Wagner
,
T.
,
Dmytrieva
,
S. V.
,
Kosakowski
,
G.
,
Hingerl
,
F. F.
,
Chudnenko
,
K. V.
, and
Berner
,
U. R.
, “
GEM-Selektor Geochemical Modeling Package: Revised Algorithm and GEMS3K Numerical Kernel for Coupled Simulation Codes
,”
Comput. Geosci.
, Vol.
17
, No.
1
,
2013
, pp.
1
24
. https://doi.org/10.1007/s10596-012-9310-6
29.
Dilnesa
,
B.
,
Lothenbach
,
B.
,
Le Saout
,
G.
,
Renaudin
,
G.
,
Mesbah
,
A.
,
Filinchuk
,
Y.
,
Wichser
,
A.
, and
Wieland
,
E.
, “
Iron in Carbonate Containing AFm Phases
,”
Cem. Concr. Res.
, Vol.
41
, No.
3
,
2011
, pp.
311
323
. https://doi.org/10.1016/j.cemconres.2010.11.017
30.
Dilnesa
,
B. Z.
,
Lothenbach
,
B.
,
Renaudin
,
G.
,
Wichser
,
A.
, and
Kulik
,
D.
, “
Synthesis and Characterization of Hydrogarnet Ca3(AlxFe1-x)2(SiO4)y (OH)4(3-y)
,”
Cem. Concr. Res.
, Vol.
59
,
2014
, pp.
96
111
. https://doi.org/10.1016/j.cemconres.2014.02.001
31.
Dilnesa
,
B. Z.
,
Lothenbach
,
B.
,
Renaudin
,
G.
,
Wichser
,
A.
, and
Wieland
,
E.
, “
Stability of Monosulfate in the Presence of Iron
,”
J. Am. Ceram. Soc.
, Vol.
95
, No.
10
,
2012
, pp.
3305
3316
. https://doi.org/10.1111/j.1551-2916.2012.05335.x
32.
Kulik
,
D. A.
, “
Improving the Structural Consistency of C-S-H Solid Solution Thermodynamic Models
,”
Cem. Concr. Res.
, Vol.
41
, No.
5
,
2011
, pp.
477
495
. https://doi.org/10.1016/j.cemconres.2011.01.012
33.
Kulik
,
D. A.
and
Kersten
,
M.
, “
Aqueous Solubility Diagrams for Cementitious Waste Stabilization Systems: II, End-Member Stoichiometries of Ideal Calcium Silicate Hydrate Solid Solutions
,”
J. Am. Ceram. Soc.
, Vol.
84
,
2001
, pp.
3017
3026
. https://doi.org/10.1111/j.1151-2916.2001.tb01130.x
34.
Kulik
,
D. A.
and
Kersten
,
M.
, “
Aqueous Solubility Diagrams for Cementitious Waste Stabilization Systems. 4. A Carbonation Model for Zn-Doped Calcium Silicate Hydrate by Gibbs Energy Minimization
,”
Environ. Sci. Technol.
, Vol.
36
, No.
13
,
2002
, pp.
2926
2931
. https://doi.org/10.1021/es010250v
35.
Lothenbach
,
B.
,
Matschei
,
T.
,
Moschner
,
G.
, and
Glasser
,
F. P.
, “
Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement
,”
Cem. Concr. Res.
, Vol.
38
, No.
1
,
2008
, pp.
1
18
. https://doi.org/10.1016/j.cemconres.2007.08.017
36.
Lothenbach
,
B.
,
Pelletier-Chaignat
,
L.
, and
Winnefeld
,
F.
, “
Stability in the System CaO-Al2O3-H2O
,”
Cem. Concr. Res.
, Vol.
42
, No.
12
,
2012
, pp.
1621
1634
. https://doi.org/10.1016/j.cemconres.2012.09.002
37.
Matschei
,
T.
,
Lothenbach
,
B.
, and
Glasser
,
F. P.
, “
Thermodynamic Properties of Portland Cement Hydrates in the System CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O
,”
Cem. Concr. Res.
Vol.
37
, No.
10
,
2007
, pp.
1379
1410
. https://doi.org/10.1016/j.cemconres.2007.06.002
38.
Moschner
,
G.
,
Lothenbach
,
B.
,
Rose
,
J.
,
Ulrich
,
A.
,
Figi
,
R.
, and
Kretzschmar
,
R.
, “
Solubility of Fe-Ettringite (Ca6[Fe(OH)6]2(SO4)3.26H2O)
,”
Geochim. Cosmochim. Acta
, Vol.
72
, No.
1
,
2008
, pp.
1
18
. https://doi.org/10.1016/j.gca.2007.09.035
39.
Moschner
,
G.
,
Lothenbach
,
B.
,
Winnefeld
,
F.
,
Ulrich
,
A.
,
Figi
,
R.
, and
Kretzschmar
,
R.
, “
Solid Solution Between Al-Ettringite and Fe-Ettringite (Ca6[Al1-xFex(OH)(6)](2)(SO4)(3).26H(2)O)
,”
Cem. Concr. Res.
, Vol.
39
, No.
6
,
2009
, pp.
482
489
. https://doi.org/10.1016/j.cemconres.2009.03.001
40.
Schmidt
,
T.
,
Lothenbach
,
B.
,
Romer
,
M.
,
Scrivener
,
K.
,
Rentsch
,
D.
, and
Figi
,
R.
, “
A Thermodynamic and Experimental Study of the Conditions of Thaumasite Formation
,”
Cem. Concr. Res.
, Vol.
38
, No.
3
,
2008
, pp.
337
349
. https://doi.org/10.1016/j.cemconres.2007.11.003
41.
De Weerdt
,
K.
,
Colombo
,
A.
,
Coppola
,
L.
,
Justnes
,
H.
, and
Geiker
,
M.
, “
Impact of the Associated Cation on Chloride Binding of Portland Cement Paste
,”
Cem. Concr. Res.
, Vol.
68
,
2015
, pp.
196
202
. https://doi.org/10.1016/j.cemconres.2014.01.027
42.
Christensen
,
A. N.
,
Jensen
,
T. R.
, and
Hanson
,
J. C.
, “
Formation of Ettringite, Ca6Al2(SO4)3(OH)12.26H2O, AFt, and Monosulfate, Ca4Al2O6(SO4)·14H2O, AFm-14, in Hydrothermal Hydration of Portland Cement and of Calcium Aluminum Oxide—Calcium Sulfate Dihydrate Mixtures Studied by in Situ Synchrotron X-Ray Powder Diffraction
,”
J. Solid State Chem.
, Vol.
177
, No.
6
,
2004
, pp.
1944
1951
. https://doi.org/10.1016/j.jssc.2003.12.030
43.
Baquerizo
,
L. G.
,
Matschei
,
T.
, and
Scrivener
,
K. L.
, “
Impact of Water Activity on the Stability of Ettringite
,”
Cem. Concr. Res.
, Vol.
79
,
2016
, pp.
31
44
. https://doi.org/10.1016/j.cemconres.2015.07.008
This content is only available via PDF.
You do not currently have access to this content.