Abstract

Advances in digital image analysis have allowed for rapid and detailed investigations of the microstructural topography of cementitious materials, and recent theoretical and analytical work have allowed for recovery of 3D information from 2D analyses. However, measurements of parameters such as the entrained air void size distribution and number density obtained from digital images of concrete are sensitive to the resolution of the image. To address this, an analytical model for recovering 3D information from 2D sections was applied to images of air-entrained mortar at different resolutions, and the results were interpreted in terms of fractal geometry. It is shown that there exists a “cutoff” resolution for scale independence, which is crucial for viewing stereological measurements in an absolute sense rather than relative to the resolution of the instrument used to acquire them. For the analysis of entrained air void structure, this cutoff resolution is around 3200 DPI; for such analyses, it is recommended that images be acquired at this resolution. Furthermore, the same analytical model was validated against full 3D X-ray microtomographic images.

References

1.
Mandelbrot
,
B.
, “
How Long is the Coast of Britain? Statistical Self-Similarity and the Fractional Dimension
,”
Science
, Vol.
156
, No.
3775
,
1967
, pp.
636
638
. https://doi.org/10.1126/science.156.3775.636
2.
Mandelbrot
,
B. B.
,
Fractals: Form, Chance, and Dimension
,
W.H. Freeman and Company
,
New York
,
1982
.
3.
Rigaut
,
J. P.
,
Schoëvaërt-Brossault
,
D.
,
Downs
,
A. M.
, and
Landini
,
G.
, “
Asymptotic Fractals in the Context of Grey-Scale Images
,”
J. Microsc.
, Vol.
189
, No.
1
,
1998
, pp.
57
63
. https://doi.org/10.1046/j.1365-2818.1998.00284.x
4.
Ahammer
,
H.
,
DeVaney
,
T. T.
, and
Tritthart
,
H. A.
, “
How Much Resolution is Enough? Influence of Downscaling the Pixel Resolution of Digital Images on the Generalised Dimensions
,”
Phys. D
, Vol.
181
, Nos.
3–4
,
2003
, pp.
147
156
. https://doi.org/10.1016/S0167-2789(03)00099-X
5.
Beckingham
,
L. E.
,
Peters
,
C. A.
,
Um
,
W.
,
Jones
,
K. W.
, and
Lindquist
,
W. B.
, “
2D and 3D Imaging Resolution Trade-Offs in Quantifying Pore Throats for Prediction of Permeability
,”
Adv. Water Resour.
, Vol.
62A
,
2013
, pp.
1
12
. https://doi.org/10.1016/j.advwatres.2013.08.010
6.
Dearnley
,
R.
, “
Effects of Resolution on the Measurement of Grain ‘Size’
,”
Mineralog. Mag.
, Vol.
49
,
1985
, pp.
539
546
. https://doi.org/10.118/minmag.1985.059.353.07
7.
Paumgartner
,
D.
,
Losa
,
G.
, and
Weibel
,
E. R.
, “
Resolution Effect on the Stereological Estimation of Surface and Volume and its Interpretation in Terms of Fractal Dimensions
,”
J. Microsc.
, Vol.
121
, No.
1
,
1981
, pp.
51
63
. https://doi.org/10.1111/j.1365-2818.1981.tb01198.x
8.
Baveye
,
P.
,
Boast
,
C. W.
,
Ogawa
,
S.
,
Parlange
,
J.-Y.
, and
Steenhuis
,
T.
, “
Influence of Image Resolution and Thresholding on the Apparent Mass Fractal Characteristics of Preferential Flow Patterns in Field Soils
,”
Water Resour. Res.
, Vol.
34
, No.
11
,
1998
, pp.
2783
2796
. https://doi.org/10.1029/98WR01209
9.
Mayercsik
,
N. P.
,
Felice
,
R.
,
Ley
,
M. T.
, and
Kurtis
,
K. E.
, “
A Probabilistic Technique for Entrained Air Void Analysis in Hardened Concrete
,”
Cem. Concr. Res.
, Vol.
59
,
2014
, pp.
16
23
. https://doi.org/10.1016/j.cemconres.2014.01.023
10.
Lu
,
B.
and
Torquato
,
S.
, “
Nearest-Surface Distribution Functions for Polydispersed Particle Systems
,”
Phys. Rev. A
, Vol.
45
, No.
8
,
1992
, pp.
5530
5544
. https://doi.org/10.1103/PhysRevA.45.5530
11.
ASTM C457/C457M-12,
Standard Test Method for Microscopial Determination of Parameters of the Air-Void System in Hardened Concrete
,
ASTM International
,
West Conshohocken, PA
,
2009
, www.astm.org
12.
Baranau
,
V.
,
Hlushkou
,
D.
,
Khirevich
,
S.
, and
Tallarek
,
U.
, “
Pore-Size Entropy of Random Hard-Sphere Packings
,”
Soft Matter
, Vol.
9
, No.
12
,
2013
, pp.
3361
3372
. https://doi.org/10.1039/c3sm27374a
13.
Bondar
,
N. V.
and
Brodyn
,
M. S.
, “
Evolution of Excitonic States in Two-Phase Systems With Quantum Dots of II-VI Semiconductors Near the Percolation Threshold
,”
Phys. E
, Vol.
42
, No.
5
,
2010
, pp.
1549
1554
. https://doi.org/10.1016/j.physe.2009.12.043
14.
Derossi
,
A.
,
De Pilli
,
T.
, and
Severini
,
C.
, “
Statistical Descriptors of Food Microstructure. Extraction of Some Correlation Functions From 2D Images
,”
Food Biophys.
, Vol.
8
, No.
4
,
2013
, pp.
311
320
. https://doi.org/10.1007/s11483-013-9307-2
15.
Peterson
,
K. W.
,
Swartz
,
R. A.
,
Sutter
,
L. L.
, and
Van Dam
,
T.
, “
Hardened Concrete Air Void Analysis With a Flatbed Scanner
,”
Transp. Res. Rec.
, Vol.
1775
,
2001
, pp.
36
43
. https://doi.org/10.3141/1775-06
16.
Torquato
,
S.
,
Random Heterogeneous Materials
,
Springer
,
New York
,
2002
.
17.
Yeong
,
C. L. Y.
and
Torquato
,
S.
, “
Reconstructing Random Medi
,”
Phys. Rev. E
, Vol.
57
, No.
1
,
1998
, pp.
495
505
. https://doi.org/10.1103/PhysRevE.57.495
18.
Snyder
,
K. A.
, “
A Numerical Test of Air Void Spacing Equations
,”
Adv. Cem. Based Mater.
, Vol.
8
, No.
1
,
1998
, pp.
28
44
. https://doi.org/10.1016/S1065-7355(98)00007-8
19.
Pleau
,
R.
,
Pigeon
,
M.
, and
Larencot
,
J. L.
, “
Some Findings on the Usefulness of Image Analysis for Determining the Characteristics of the Air-Void System on Hardened Concrete
,”
Cem. Concr. Compos.
, Vol.
23
, Nos.
2–3
,
2001
, pp.
237
246
. https://doi.org/10.1016/S0958-9465(00)00079-2
20.
Dequiedt
,
A. S.
,
Coster
,
M.
,
Chermant
,
L.
, and
Chermant
,
J. L.
, “
Distances Between Air-Voids in Concrete by Automatic Methods
,”
Cem. Concr. Compos.
, Vol.
23
, Nos.
2–3
,
2001
, pp.
247
254
. https://doi.org/10.1016/S0958-9465(00)00055-X
21.
Zhang
,
Z.
,
Ansari
,
F.
, and
Vitillo
,
N.
, “
Automated Determination of Entrained Air-Void Parameters in Hardened Concrete
,”
ACI Mater. J.
, Vol.
102
, No.
1
,
2005
, pp.
42
48
.
22.
Peterson
,
K.
,
Carlson
,
J.
,
Sutter
,
L.
, and
Van Dam
,
T.
, “
Methods for Threshold Optimization for Images Collected From Contrast Enhanced Concrete Surfaces for Air-Void System Characterization
,”
Mater. Character.
, Vol.
60
, No.
7
,
2009
, pp.
710
715
. https://doi.org/10.1016/j.matchar.2008.10.005
23.
Jin
,
S.
,
Zhang
,
J.
, and
Huang
,
B.
, “
Fractal Analysis of Effect of Air Void on Freeze-Thaw Resistance of Concrete
,”
Constr. Build. Mater.
, Vol.
47
,
2013
, pp.
126
130
. https://doi.org/10.1016/j.conbuildmat.2013.04.040
24.
Landis
,
E. N.
and
Keane
,
D. T.
, “
X-Ray Microtomography
,”
Mater. Character.
, Vol.
61
, No.
12
,
2010
, pp.
1305
1316
. https://doi.org/10.1016/j.matchar.2010.09.012
25.
Otsu
,
N.
, “
A Threshold Selection Method from Gray-Level Histograms
,”
IEEE Trans. Syst., Man, Cybernet.
, Vol.
9
, No.
1
,
1979
, pp.
62
66
. https://doi.org/10.1109/TSMC.1979.4310076
26.
Russ
,
J. C.
and
Dehoff
,
R. T.
,
Practical Stereology
, 2nd ed.,
Plenum Press
,
New York
,
2000
.
This content is only available via PDF.
You do not currently have access to this content.