Abstract

The incessant growth in urbanization, and the population explosion associated with it, has resulted in an increased discharge in sewage disposal lagoons and has led to their overloading. This results in the improper functioning of these lagoons, which greatly affects the treatment of sludge and wastewater. The influents, which carry along with them a huge load of substance, referred to as socioeconomically generated sediments (SeGSs), substantially reduce the capacity of the lagoons and the retention time of the sewage water and sludge. This situation poses a major challenge to municipal engineers and town planners, and to overcome it, either periodic or once-per-lifetime desiltation of these lagoons is warranted. However, in present-day megacities, there are several concerns associated with the desiltation process, viz., selection of the most economical and efficient technique, the availability of dumping ground(s), and transportation of the SeGSs to these dumping grounds. This is where utilization of SeGSs as a manmade resource could be a good initiative towards sustainable development. However, this endeavor entails a holistic understanding of the SeGSs by conducting detailed investigations to characterize them based on their physical, chemical, morphological, and microbial attributes before postulating a strategy for their sustainable utilization. With this in view, extensive sampling of the SeGSs from sewage disposal lagoons located in the western part of India was conducted followed by their very comprehensive characterization. Details of the methodologies adopted for this exercise were presented in this manuscript, and recommendations were made to utilize SeGSs for sustainable development in the most efficient manner.

References

1.
Elliott
,
E. T.
and
Cambardella
,
C. A.
, “
Organic Matter and Nutrient Cycling Physical Separation of Soil Organic Matter
,”
Agric. Ecosyst. Environ.
, Vol.
34
, Nos.
1–4
,
1991
, pp.
407
419
. https://doi.org/10.1016/0167-8809(91)90124-G
2.
Bertelle
,
M.
,
Leotta
,
G.
,
Calogero
,
S.
, and
Oddone
,
M.
, “
Characterisation of Sediments of the Tarn Flat Lake (Antarctica)
,”
Int. J. Environ. Anal. Chem.
, Vol.
71
, Nos.
3–4
,
2012
, pp.
227
244
. https://doi.org/10.1080/03067319808032629
3.
Singh
,
K. P.
,
Mohan
,
D.
,
Singh
,
V. K.
, and
Malik
,
A.
, “
Studies on Distribution and Fractionation of Heavy Metals in Gomti River Sediments—A Tributary of the Ganges, India
,”
J. Hydrol.
, Vol.
312
, Nos.
1–4
,
2005
, pp.
14
27
. https://doi.org/10.1016/j.jhydrol.2005.01.021
4.
Devai
,
I.
,
Delaune
,
R. D.
,
Dévai
,
G.
,
Aradi
,
C.
,
Göri
,
S.
,
Nagy
,
A. S.
, and
Tálas
,
Z.
, “
Characterization of Mercury and Other Heavy Metals in Sediment of an Ecological Important Backwater Area of River Tisza (Hungary)
,”
J. Environ. Sci. Health. A.
, Vol.
42
, No.
7
,
2007
, pp.
859
864
. https://doi.org/10.1080/10934520701373141
5.
Delistraty
,
D.
and
Yokel
,
J.
, “
Chemical and Ecotoxicological Characterization of Columbia River Sediments Below the Hanford Site (USA)
,”
Ecotoxicol. Environ. Saf.
, Vol.
66
, No.
1
,
2007
, pp.
16
28
. https://doi.org/10.1016/j.ecoenv.2005.10.008
6.
Sarika
,
P. R.
and
Chandramohanakumar
,
N.
, “
Geochemistry of Heavy Metals in the Surficial Sediments of Mangroves of the South West Coast of India
,”
Chem. Ecol.
, Vol.
24
, No.
6
,
2008
, pp.
37
41
. https://doi.org/10.1080/02757540802491312
7.
Hahladakis
,
J.
,
Smaragdaki
,
E.
,
Vasilaki
,
G.
, and
Gidarakos
,
E.
, “
Use of Sediment Quality Guidelines and Pollution Indicators for the Assessment of Heavy Metal and PAH Contamination in Greek Surficial Sea and Lake Sediments
,”
Environ. Monit. Assess.
, Vol.
185
, No.
3
,
2013
, pp.
2843
2853
. https://doi.org/10.1007/s10661-012-2754-2
8.
Khairy
,
M.
, “
Assessment of Priority Phenolic Compounds in Sediments From an Extremely Polluted Coastal Wetland (Lake Maryut, Egypt)
,”
Environ. Monit. Assess.
, Vol.
185
, No.
1
,
2013
, pp.
441
455
. https://doi.org/10.1007/s10661-012-2566-4
9.
Wang
,
H.
,
Yang
,
Z.
,
Saito
,
Y.
,
Liu
,
J. P.
,
Sun
,
X.
, and
Wang
,
Y.
, “
Stepwise Decreases of the Huanghe (Yellow River) Sediment Load (1950-2005): Impacts of Climate Change and Human Activities
,”
Glob. Planet. Change
, Vol.
57
, Nos.
3-4
,
2007
, pp.
331
354
. https://doi.org/10.1016/j.gloplacha.2007.01.003
10.
Sharma
,
S.
and
Singh
,
D. N.
, “
Characterization of Sediments for Sustainable Development: State-of-the-Art
,”
Mar. Georesour. Geotec.
, Vol.
33
, No.
5
,
2014
, pp.
447
465
. https://doi.org/10.1080/1064119X.2014.953232
11.
Olatunji
,
A. S.
and
Abimbola
,
A. F.
, “
Geochemical Evaluation of the Lagos Lagoon Sediments and Water
,”
World Appl. Sci. J.
, Vol.
9
, No.
2
,
2010
, pp.
178
193
.
12.
Ben Allal
,
L.
,
Ammari
,
M.
,
Frar
,
I.
,
Azmani
,
A.
,
Clastres
,
P.
, and
Jullien
,
S.
, “
Stabilization of Contaminated Canal Sediments
,”
Eur. J. Environ. Civ. Eng.
, Vol.
15
, No.
2
,
2011
, pp.
293
302
. https://doi.org/10.1080/19648189.2011.9693323
13.
Deepulal
,
P. M.
,
Kumar
,
T. R. G.
,
Sujatha
,
C. H.
, and
George
,
R.
, “
Chemometric Study on the Trace Metal Accumulation in the Sediments of the Cochin Estuary–Southwest Coast of India
,”
Environ. Monit. Assess.
, Vol.
184
, No.
10
,
2012
, pp.
6261
6279
. https://doi.org/10.1007/s10661-011-2418-7
14.
Namèche
,
T.
,
Chabir
,
D.
, and
Vasel
,
J.
, “
Characterization of Sediments in Aerated Lagoons and Waste Stabilization Ponds
,”
Int. J. Environ. Anal. Chem.
, Vol.
68
, Nos.
2
,
1997
, pp.
257
279
. https://doi.org/10.1080/03067319708030494
15.
Mulligan
,
C. N.
,
Yong
,
R. N.
, and
Gibbs
,
B. F.
, “
Remediation Technologies for Metal-Contaminated Soils and Groundwater: An Evaluation
,”
Eng. Geol.
, Vol.
60
, Nos.
1–4
,
2001
, pp.
193
207
. https://doi.org/10.1016/S0013-7952(00)00101-0
16.
Wang
,
D. X.
,
Abriak
,
N. E.
,
Zentar
,
R.
, and
Xu
,
W. Y.
, “
Solidification/Stabilization of Dredged Marine Sediments for Road Construction
,”
Environ. Technol.
, Vol.
33
, No.
1
,
2012
pp.
95
101
. https://doi.org/10.1080/09593330.2011.551840
17.
United States Environmental Protection Agency
, “
The Contaminated Sediment Management Strategy
,” Report No. EPA-823-R-98-001,
USEPA
, Washington, D.C.,
1998
.
18.
Pan
,
S.
,
Lin
,
C.
, and
Tseng
,
D.
, “
Reusing Sewage Sludge Ash as Adsorbent for Copper Removal From Wastewater
,”
Resour. Conserv. Recycl.
, Vol.
39
, No.
1
,
2003
, pp.
79
90
. https://doi.org/10.1016/S0921-3449(02)00122-2
19.
Chen
,
Z.
,
Afzal
,
M. T.
,
Salema
,
A. A.
, and
Preparation
,
A. S.
, “
Microwave Drying of Wastewater Sewage Sludge
,”
J. Clean Energy Technol.
, Vol.
2
, No.
3
,
2014
, pp.
282
286
. https://doi.org/10.7763/JOCET.2014.V2.140
20.
United States Environmental Protection Agency
, “
Toxicity characteristic Leaching Procedure
,” Report No. 1311,
USEPA
, Washington, D.C.,
1992
.
21.
Hwang
,
I. H.
,
Ouchi
,
Y.
, and
Matsuto
,
T.
, “
Characteristics of Leachate From Pyrolysis Residue of Sewage Sludge
,”
Chemosphere
, Vol.
68
, No.
10
,
2007
, pp.
1913
1919
. https://doi.org/10.1016/j.chemosphere.2007.02.060
22.
Goldar
,
B.
and
Banerjee
,
N.
, “
Impact of Informal Regulation of Pollution on Water Quality in Rivers in India
,”
J. Environ. Manage.
, Vol.
73
, No.
2
,
2004
, pp.
117
130
. https://doi.org/10.1016/j.jenvman.2004.06.008
23.
Chen
,
G.
and
White
,
P. A.
, “
The Mutagenic Hazards of Aquatic Sediments: A Review
,”
Mutat. Res.
, Vol.
567
, Nos.
2–3
,
2004
, pp.
151
225
. https://doi.org/10.1016/j.mrrev.2004.08.005
24.
Bhattacharyya
,
K. G.
and
Kapil
,
N.
, “
Impact of Urbanization on the Quality of Water in a Natural Reservoir: A Case Study With the Deepor Beel in Guwahati City, India
,”
Water Environ. J.
, Vol.
24
, No.
2
,
2010
, pp.
83
96
. https://doi.org/10.1111/j.1747-6593.2008.00157.x
25.
Mashiatullah
,
A.
,
Chaudhary
,
M. Z.
,
Ahmad
,
N.
,
Javed
,
T.
, and
Ghaffar
,
A.
, “
Metal Pollution and Ecological Risk Assessment in Marine Sediments of Karachi Coast, Pakistan
,”
Environ. Monit. Assess.
, Vol.
185
, No.
2
,
2013
, pp.
1555
1565
. https://doi.org/10.1007/s10661-012-2650-9
26.
Tay
,
J.
and
Show
,
K.
, “
Manufacture of Cement From Sewage Sludge
,”
J. Mater. Civ. Eng.
, Vol.
5
, No.
1
,
1993
, pp.
19
29
. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:1(19)
27.
Gerić
,
M.
,
Gajski
,
G.
,
Oreščcanin
,
V.
,
Kollar
,
R.
, and
Garaj-Vrhovac
,
V.
, “
Chemical and Toxicological Characterization of the Bricks Produced From Clay/Sewage Sludge Mixture
,”
J. Environ. Sci. Health. A
, Vol.
47
, No.
11
,
2012
, pp.
1521
1527
. https://doi.org/10.1080/10934529.2012.680360
28.
Okuno
,
N.
and
Takahashi
,
S.
, “
Full Scale Application of Manufacturing Bricks From Sewage
,”
Water Sci. Technol.
, Vol.
36
, No.
11
,
1997
, pp.
243
250
. https://doi.org/10.1016/S0273-1223(97)00686-0
29.
Sahu
,
A. K.
, “
Present Scenario of Municipal Solid Waste (MSW) Dumping Grounds in India
,”
Proceedings of the International Conference on Sustainable Solid Waste Management
, Chennai, India, September 5–7,
2007
,
National Solid Water Association of India
,
Mumbai, India
, pp.
327
333
.
30.
Rulkens
,
W.
, “
Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options
,”
Energ. Fuels
, Vol.
22
, No.
1
,
2008
, pp.
9
15
. https://doi.org/10.1021/ef700267m
31.
Molla
,
A. H.
,
Fakhru'l-Razi
,
A.
,
Abd-Aziz
,
S.
,
Hanafi
,
M. M.
,
Roychoudhury
,
P. K.
, and
Alam
,
M. Z.
, “
A Potential Resource for Bioconversion of Domestic Wastewater Sludge
,”
Bioresour. Technol.
, Vol.
85
, No.
3
,
2002
, pp.
263
272
. https://doi.org/10.1016/S0960-8524(02)00117-7
32.
Anderson
,
M.
, “
Encouraging Prospects for Recycling Incinerated Sewage Sludge Ash (ISSA) Into Clay-Based Building Products
,”
J. Chem. Technol. Biotechnol.
, Vol.
77
, No.
3
,
2002
, pp.
352
360
. https://doi.org/10.1002/jctb.586
33.
Suthagaran
,
V.
,
Arulrajah
,
A.
,
Bo
,
M. W.
, and
Wilson
,
J.
, “
Stabilisation of Biosolids with Admixtures for Potential Use as an Embankment Fill Material
,”
Aust. Geomech.
, Vol.
44
, No.
3
,
2009
, pp.
63
70
.
34.
Lam
,
K. P.
,
Yan
,
S.
, and
Chu
,
J.
, “
Methods for Improvement of Clay Slurry or Sewage Sludge
,”
Proc. ICE - Gr. Improv.
, Vol.
165
, No.
4
,
2012
, pp.
187
199
. https://doi.org/10.1680/grim.11.00015
35.
ASTM D 6640-01(2015):
Standard Practice for Collection and Handling of Soils Obtained in Core Barrel Samplers for Environmental Investigations
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
36.
United States Environmental Protection Agency
,
Procedures for Handling and Chemical Analysis of Sediment and Water Samples
,
USEPA
,
Washington, D.C.
,
1981
.
37.
Sheykhi
,
V.
and
Moore
,
F.
, “
Evaluation of Potentially Toxic Metals Pollution in the Sediments of the Kor River, Southwest Iran.
,”
Environ. Monit. Assess.
, Vol.
185
, No.
4
,
2013
, pp.
3219
3232
. https://doi.org/10.1007/s10661-012-2785-8
38.
ASTM D2216-10:
Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
,
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org
39.
ASTM D5550-14:
Standard Test Method for Specific Gravity of Soil Solids by Gas Pycnometer
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
40.
Viguri
,
J.
,
Verde
,
J.
, and
Irabien
,
A.
, “
Environmental Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Sediments of the Santander Bay, Northern Spain
,”
Chemosphere
, Vol.
48
, No.
2
,
2002
, pp.
157
165
. https://doi.org/10.1016/S0045-6535(02)00105-4
41.
Grabowski
,
R. C.
,
Droppo
,
I. G.
, and
Wharton
,
G.
, “
Erodibility of Cohesive Sediment: The Importance of Sediment Properties
,”
Earth Sci. Rev.
, Vol.
105
, Nos.
3–4
,
2011
, pp.
101
120
. https://doi.org/10.1016/j.earscirev.2011.01.008
42.
Thipkhunthod
,
P.
,
Meeyoo
,
V.
,
Rangsunvigit
,
P.
,
Kitiyanan
,
B.
,
Siemanond
,
K.
, and
Rirksomboon
,
T.
, “
Predicting the Heating Value of Sewage Sludges in Thailand From Proximate and Ultimate Analyses
,”
Fuel
, Vol.
84
, Nos.
7–8
,
2005
, pp.
849
857
. https://doi.org/10.1016/j.fuel.2005.01.003
43.
Arnepalli
,
D. N.
,
Hanumantha Rao
,
B.
,
Shanthakumar
,
S.
, and
Singh
,
D. N.
, “
Determination of Distribution Coefficient of Geomaterials and Immobilizing Agents
,”
Can. Geotech. J.
, Vol.
47
, No.
10
,
2010
, pp.
1139
1148
. https://doi.org/10.1139/T10-014
44.
Sharma
,
S.
and
Singh
,
D. N.
, “
Soil Characterization for Comprehending Stability of Geotechnical Structures
,”
Computer Methods and Recent Advances in Geomechanics
,
Taylor & Francis
,
London
,
2015
, pp.
1661
1665
.
45.
Gumaste
,
S. D.
,
Iyer
,
K. R.
,
Sharma
,
S.
,
Channabasavaraj
,
W.
, and
Singh
,
D. N.
, “
Simulation of Fabric in Sedimented Clays
,”
Appl. Clay Sci.
, Vols.
91–92
,
2014
, pp.
117
126
. https://doi.org/10.1016/j.clay.2014.01.011
46.
Mitchell
,
J. K.
and
Santamarina
,
J. C.
, “
Biological Considerations in Geotechnical Engineering
,”
J. Geotech. Geoenviron. Eng.
, Vol.
131
, No.
10
,
2005
, pp.
1222
1233
. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222)
47.
AASHTO T267-86:
Standard Method of Test for Determination of Organic Content in Soils by Loss on Ignition
,
AASHTO
,
Washington, D.C.
,
2013
.
48.
United States Environmental Protection Agency
,
Guidelines for Water Reuse
,
USEPA
,
Washington, D.C.
,
1992
49.
Huat
,
B. B. K.
,
Asadi
,
A.
, and
Kazemian
,
S.
, “
Experimental Investigation on Geomechanical Properties of Tropical Organic Soils and Peat
,”
Amer. J. Eng. App. Sci.
, Vol.
2
, No.
1
,
2009
, pp.
184
188
. https://doi.org/10.3844/ajeassp.2009.184.188
50.
Mesri
,
G.
,
Asce
,
M.
,
Ajlouni
,
M.
, and
Asce
,
A. M.
, “
Engineering Properties of Fibrous Peats
,”
J. Geotech. Geoenviron. Eng.
, Vol.
133
, No.
7
,
2007
, pp.
850
866
. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(850)
51.
Kazemian
,
S.
,
Huat
,
B. B. K.
,
Prasad
,
A.
, and
Barghchi
,
M.
, “
A State of Art Review of Peat: Geotechnical Engineering Perspective
,”
Int. J. Phys. Sci.
, Vol.
6
, No.
8
,
2011
, pp.
1974
1981
. https://doi.org/10.5897/IJPS11.396
52.
Padmakumar
,
G. P.
,
Srinivas
,
K.
,
Uday
,
K. V.
,
Iyer
,
K. R.
,
Pathak
,
P.
,
Keshava
,
S. M.
, and
Singh
,
D. N.
, “
Characterization of Aeolian Sands From Indian Desert
,”
Eng. Geol.
, Vols.
139–140
,
2012
, pp.
38
49
. https://doi.org/10.1016/j.enggeo.2012.04.005
53.
Sutherland
,
I.
, “
The Biofilm Matrix: An Immobilized but Dynamic Microbial Environment
,”
Trends Microbiol.
, Vol.
9
, No.
5
,
2001
, pp.
222
227
. https://doi.org/10.1016/S0966-842X(01)02012-1
54.
Edil
,
T. B.
and
Fox
,
P. J.
,
Geotechnics of High Water Content Materials, ASTM STP 1374
,
ASTM International
,
West Conshohocken, PA
,
2000
.
55.
Kyzio
,
J.
, “
Effect of Physical Properties and Cation Exchange Capacity on Sorption of Heavy Metals Onto Peats
,”
Pol. J. Environ. Stud.
, Vol.
11
, No.
6
,
2002
, pp.
713
718
.
56.
Perez
,
M.
,
Usero
,
J.
,
Gracia
,
I.
, and
Cabrera
,
F.
, “
Trace Metals in Sediments From the Ria de Huelva
,”
Toxicol. Environ. Chem.
, Vol.
31
, No.
1
,
2013
, pp.
275
283
. https://doi.org/10.1080/02772249109357698
57.
Malawska
,
M.
,
Ekonomiuk
,
A.
, and
Wi
,
B.
, “
Chemical Characteristics Of Some Peatlands in Southern Poland
,”
Mires Peat
, Vol.
1
,
2006
, pp.
1
14
.
58.
Kechavarzi
,
C.
,
Dawson
,
Q.
, and
Leeds-Harrison
,
P. B.
, “
Physical Properties of Low-Lying Agricultural Peat Soils in England
,”
Geoderma
, Vol.
154
, Nos.
3–4
,
2010
, pp.
196
202
. https://doi.org/10.1016/j.geoderma.2009.08.018
59.
Cayci
,
G.
,
Baran
,
A.
,
Ozaytekin
,
H.
,
Kutuk
,
C.
,
Karaca
,
S.
, and
Cicek
,
N.
, “
Morphology, Chemical Properties, and Radiocarbon Dating of Eutrophic Peat in Turkey
,”
Catena
, Vol.
85
, No.
3
,
2011
, pp.
215
220
. https://doi.org/10.1016/j.catena.2011.01.005
60.
Kazemian
,
S.
,
Huat
,
B. B. K.
,
Prasad
,
A.
, and
Barghchi
,
M.
, “
Effect of Peat Media on Stabilization of Peat by Traditional Binders
,”
Int. J. Phys. Sci.
, Vol.
6
, No.
3
,
2011
, pp.
476
481
. https://doi.org/10.5897/IJPS10.478
61.
Ponziani
,
M.
,
Slob
,
E. C.
, and
Vanhala
,
H.
, “
Influence of Physical and Chemical Properties on the Low-Frequency Complex Conductivity of Peat
,”
Near. Surface. Geophysics.
, Vol.
10
, No.
6
,
2012
, pp.
491
501
. https://doi.org/10.3997/1873-0604.2011037
62.
Badv
,
K.
and
Sayadian
,
T.
, “
Characteristics of Urmia Peat
,”
Int. J. Sci. Tech.
, Vol.
36
, No.
C2
,
2012
, pp.
167
180
.
63.
Gumaste
,
S. D.
and
Singh
,
D. N.
, “
Application of Impedance Spectroscopy for Determining Fabric Anisotropy of Fine-Grained Soils
,”
J. Test. Eval.
, Vol.
38
, No.
3
,
2010
, pp.
1
10
. https://doi.org/10.1520/JTE102624
64.
O'Kelly
,
B. C.
, “
Geotechnical Properties of Municipal Sewage Sludge
,”
Geotech. Geol. Eng.
, Vol.
24
, No.
4
,
2006
, pp.
833
850
. https://doi.org/10.1007/s10706-005-6611-8
65.
Degang
,
M.
,
Yang'an
,
P.
,
Xiaoyan
,
Y.
,
Shuting
,
Z.
, and
Zhanyong
,
L.
, “
The Electro-Dewatering of Sludge using Adsorptive Materials
,” presented at the
2nd International Conference on Environmental Engineering and Applications
, Shanghai, China, August 19–21, 2011, Vol.
17
,
2011
, pp.
17
24
.
66.
Morgan
,
K.
,
Mahfood
,
A.
,
Sieck
,
L. V.
,
Kucera
,
J. B.
,
Smallwood
,
W.
, and
Jackson
,
N. M.
, “
Containment and Dewatering of Dredged Materials Using Geotextile Tubes
,”
Proceedings of the Dredging Summit and Expo
, Toronto, Ontario, Canada, June 15–18,
2014
, Western Dredging Association (WEDA) and Texas A&M University.
67.
United States Environmental Protection Agency
,
Biosolids Generation, Use, and Disposal in The United States
,
USEPA
,
Washington, D.C.
,
1999
.
68.
India Department of Agriculture
,
Methods Manual: Soil Testing in India Ministry of Agriculture
,
Ministry of Agriculture
,
New Delhi, India
,
2011
.
69.
Tempest
,
B. Q.
and
Pando
,
M. A.
, “
Characterization and Demonstration of Reuse Applications of Sewage Sludge Ash
,”
Int. J. Geomater.
, Vol.
4
, No.
2
,
2013
, pp.
552
559
.
70.
Arulrajah
,
A.
,
Disfani
,
M. M.
,
Suthagaran
,
V.
, and
Imteaz
,
M.
, “
Select Chemical and Engineering Properties of Wastewater Biosolids
,”
Waste Manag.
, Vol.
31
, No.
12
,
2011
, pp.
2522
2526
. https://doi.org/10.1016/j.wasman.2011.07.014
71.
Klein
,
A.
and
Sarsby
,
R. W.
, “
Problems in Defining the Geotechnical Behaviour of Wastewater Sludges
,”
Geotechnics of High Water Content Materials, ASTM STP 1374
,
ASTM International
,
West Conshohocken, PA
,
2000
.
72.
Lo
,
I. M. C.
,
Zhou
,
W. W.
, and
Lee
,
K. M.
, “
Geotechnical Characterization of Dewatered Sewage Sludge for Landfill Disposal
,”
Can. Geotech. J.
, Vol.
39
, No.
5
,
2002
, pp.
1139
1149
. https://doi.org/10.1139/t02-058
This content is only available via PDF.
You do not currently have access to this content.