Abstract

Over the past decade there has been a significant increase in the number of concrete transportation structures reaching the end of their service lives, typically as a result of age and severe degradation. This deterioration is often the result of exposure to aggressive environments and substantial increases in vehicle loading. Rehabilitation is typically the most appropriate solution for these structures because of the high cost of full replacement, resulting in the need for cost-effective and suitable solutions for rehabilitation. Ultra-high-performance concrete (UHPC), one of the more recent advances in construction materials, appears to be a promising material for the repair of concrete structures. The potential benefit of UHPC is primarily derived from its negligible permeability, which prevents water or chemical penetration, and its high mechanical properties, which serve to increase the bearing capacity of the structure. Some of the primary challenges associated with the use of UHPC as a repair material are uncertainty in the bond performance and interaction with the existing substrate material. This paper focuses on the characterization of the interface bond and compatibility between UHPC and normal concrete. The testing program was conducted in the spirit of ASTM because no standard test methods currently exist for UHPC. In addition, a series of numerical models were developed to support the results obtained in the experimental investigations. The results highlight the exceptional performance of the bond, but they also demonstrate a number of challenges with respect to characterizing the bond. Specific challenges included characterization of surface roughness, premature specimen failure, material strength mismatch, and the quality and consistency of the testing methods used.

References

1.
ACI Committee 546
,
Guide for the Selection of Materials for the Repair of Concrete
,
American Concrete Institute
,
Farmington Hills, MI
,
2006
.
2.
Graybeal
,
B.
, “
Ultra-high Performance Concrete
,” Technical Note FHWA-HRT-11-038,
U.S. Federal Highway Administration
, McLean, VA,
2011
.
3.
Russell
,
H. G.
and
Graybeal
,
B. A.
, “
Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community
,” Technical Report No. FHWA-HRT-13-060,
U.S. Federal Highway Administration
, McLean, VA,
2013
.
4.
Harris
,
D. K.
,
2004
, “
Characterization of Punching Shear Capacity of Thin UHPC Plates
,” M.S. thesis,
Virginia Polytechnic Institute and State University
, Blacksburg, VA.
5.
Kollmorgen
,
G. A.
,
2004
, “
Impact of Age and Size on the Mechanical Behavior of and Ultra-high Performance Concrete
,” M.S. thesis,
Michigan Technological University
, Houghton, MI.
6.
Graybeal
,
B. A.
,
2005
, “
Characterization of the Behavior of Ultra-High Performance Concrete
,” Ph.D. dissertation,
University of Maryland
, College Park, MD.
7.
Graybeal
,
B.
and
Tanesi
,
J.
, “
Durability of an Ultrahigh-Performance Concrete
,”
J. Mater. Civ. Eng.
, Vol.
19
(
10
),
2007
, pp.
848
854
. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(848)
8.
Ahlborn
,
T. M.
,
Peuse
,
E. J.
, and
Misson
,
D. L.
, “
Ultra-High Performance Concrete for Michigan Bridges, Material Performance—Phase I
,” Report No. MDOT RC-1525,
Michigan Department of Transportation
, Lansing, MI,
2008
.
9.
Ren
,
F.
,
Wang
,
J. J. A.
, and
DiPaolo
,
B. P.
, “
Thermal Expansion Study and Microstructural Characterization of High-Performance Concretes
,”
J. Mater. Civ. Eng.
, Vol.
25
(
10
),
2013
, pp.
1574
1578
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000693
10.
Roy
,
M.
,
Ray
,
I.
, and
Davalos
,
J. F.
, “
High-Performance Fiber-Reinforced Concrete: Development and Evaluation as a Repairing Material
,”
J. Mater. Civ. Eng.
, Vol.
26
(
10
), p. 04014074.
11.
Vande Voort
,
T.
,
Suleiman
,
M.
, and
Sritharan
,
S.
,
Design and Performance Verification of UHPC Piles for Deep Foundations
,
Center for Transportation Research and Education Iowa State University
,
Ames, IA
,
2008
.
12.
Wille
,
K.
,
Naaman
,
A. E.
, and
El-Tawil
,
S.
, “
Optimizing Ultra-High Performance Fiber-Reinforced Concrete
,”
Concr. Int.
, Vol.
33
, No.
9
,
2011
, pp.
35
41
.
13.
Habel
,
K.
,
Charron
,
J. P.
,
Braike
,
S.
,
Hooton
,
R. D.
,
Gauvreau
,
P.
, and
Massicotteb
,
B.
, “
Ultra-High Performance Fiber-Reinforced Concrete Mix Design in Central Canada
,”
Can. J. Civ. Eng.
, Vol.
35
, No.
2
,
2008
, pp.
217
224
. https://doi.org/10.1139/L07-114
14.
Holschemacher
,
K.
and
WeiBe
,
D.
, “
Economic Mix Design Ultra High-Strength Concrete
,”
7th International Symposium on the Utilization of High-Strength/High-Performance Concrete
,
Russell
H. G.
, Ed., Vol.
II
,
American Concrete Institute
,
Farmington Hills, MI
,
2012
.
15.
Schmidt
,
M.
,
Brühwiler
,
E.
,
Fehling
,
E.
,
Denarie
,
E.
,
Leutbecher
,
T.
, and
Teichmann
,
T.
, “
Mix Design and Properties of Ultra-High Performance Fiber Reinforced Concrete for the Construction of a Composite Concrete UHPFRC-Concrete Bridge
,”
Schmidt
M.
and
Fehling
E.
, Eds.,
Proceedings of the Fifth IABSE Symposium Improving Infrastructure Worldwide—Bringing People Closer
, Vol.
93
,
IABSE
,
Weimar, Germany
,
2007
, pp.
466
476
.
16.
Teichmann
,
T.
and
Schmidt
,
M.
, “
Mix Design and Durability of Ultra High Performance Concrete (UHPC)
,”
Proceedings of the 4th International Ph.D. Symposium in Civil Engineering
,
Munich, Germany
, Sept 19–21,
2002
,
Technische Universität München, Universität der Bundeswehr München, Fédération Internationale du Béton
,
Munich, Germany
,
2002
.
17.
Graybeal
,
B. A.
,
Material Property Characterization of Ultra High Performance Concrete
,
Federal Highway Administration, U.S. Department of Transportation
,
Washington, D.C.
,
2006
.
18.
Aaleti
,
S.
,
Sritharan
,
S.
,
Bierwagen
,
D.
, and
Wipf
,
T.
, “
Experimental Evaluation of Structural Behavior of Precast UHPC Waffle Bridge Deck Panels and Connections
,”
Proceedings of the 90th Annual Meeting
,
2011
, Jan 23–27,
2011
,
Transportation Research Board
,
Washington, D.C
.
19.
Austin
,
S.
,
Robins
,
P.
, and
Pan
,
Y.
, “
Shear Bond Testing of Concrete Repairs
,”
Cem. Concr. Res.
, Vol.
29
,
1999
, pp.
1067
1076
. https://doi.org/10.1016/S0008-8846(99)00088-5
20.
Graybeal
,
B.
, “
Field-Cast UHPC Connections for Modular Bridge Deck Elements
,”
Tech Brief, Federal Highway Administration
,
McLean, VA
,
2010
.
21.
Graybeal
,
B. A.
, “
Behavior of Ultra-High Performance Concrete Connections Between Precast Bridge Deck Elements
,”
Proceedings of the Concrete Bridge Conference: Achieving Safe, Smart & Sustainable Bridges
,
Phoenix, AZ
, Feb 24–26,
National Concrete Bridge Council and the Portland Cement Association
,
Skokie, IL
,
2010
.
22.
Emmons
,
P.
and
Vaysburd
,
A.
, “
System Concept in Design and Construction of Durable Concrete Repairs
,”
Constr. Build. Mater.
, Vol.
10
, No.
1
,
1996
, pp.
69
75
. https://doi.org/10.1016/0950-0618(95)00065-8
23.
Sprinkel
,
M. M.
, “
Performance Specification for High Performance Concrete Overlays on Bridges
,” Report No. VTRC 05-R2,
Virginia Center for Transportation Innovation and Research
, Charlottesville, VA,
2004
.
24.
Espeche
,
A. D.
and
León
,
J.
, “
Estimation of Bond Strength Envelopes for Old-to-new Concrete Interfaces Based on a Cylinder Splitting Test
,”
Constr. Build. Mater.
, Vol.
25
, No.
3
,
2011
, pp.
1222
1235
. https://doi.org/10.1016/j.conbuildmat.2010.09.032
25.
Beushausen
,
H.
, “
The Influence of Concrete Substrate Preparation on Overlay Bond Strength
,”
Mag. Concr. Res.
, Vol.
62
, No.
11
,
2010
, pp.
845
852
. https://doi.org/10.1680/macr.2010.62.11.845
26.
Momayez
,
A.
,
Ehsani
,
M.
,
Ramezanianpour
,
A.
, and
Rajaie
,
H.
, “
Comparison of Methods for Evaluating Bond Strength Between Concrete Substrate and Repair Materials
,”
Cem. Concr. Res.
, Vol.
35
, No.
4
,
2005
, pp.
748
757
. https://doi.org/10.1016/j.cemconres.2004.05.027
27.
CUR Recommendation 20,
1990
, “
Determination of Bond Strength of Mortars on Concrete
,”
Center for Civil Engineering, Research, Codes and Specifications Gouda
,
Netherlands
.
28.
BS1881-207,
1992
, “
Testing Concrete. Recommendations for the Assessment of Concrete Strength by Near-to-Surface Tests
,”
British Standards Institution (BSI)
,
London
.
29.
Carbonell
,
M.
,
2012
, “
Compatibility of Ultra High Performance Concrete as Repair Material: Bond Characterization With Concrete Under Different Loading Scenarios
,” M.S. thesis,
Michigan Technological University
, Houghton, MI.
30.
Muñoz
,
M. A. C.
,
Harris
,
D. K.
,
Ahlborn
,
T. M.
, and
Froster
,
D. C.
, “
Bond Performance Between Ultra-High Performance Concrete and Normal Strength Concrete
,”
J. Mater. Civ. Eng.
, Vol.
26
, No.
8
,
2013
, p. 04014031.
31.
Harris
,
D. K.
,
Sarkar
,
J.
, and
Ahlborn
,
T. M.
, “
Characterization of Interface Bond of Ultra-High-Performance Concrete Bridge Deck Overlays
,”
Transportation Research Record. 2240
,
Transportation Research Board
,
Washington, D.C.
,
2011
.
32.
ASTM C496-04e1:
Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2004
.
33.
Geissert
,
D. G.
, “
Splitting Prism Test Method to Evaluate Concrete-to-Concrete Bond Strength
,”
ACI Mater. J.
, Vol.
96
, No.
3
,
1999
, pp.
359
366
.
34.
Li
,
S.
,
Geissert
,
D. G.
,
Frantz
,
G. C.
, and
Stephens
,
J. E.
, “
Freeze-Thaw Bond Durability of Rapid-Setting Concrete Repair Materials
,”
ACI Mater. J.
, Vol.
96
, No.
2
,
1999
, pp.
242
249
.
35.
Lee
,
M.
,
Chiu
,
C.
, and
Wang
,
Y.
, “
The Study of Bond Strength and Bond Durability of Reactive Powder Concrete
,”
ASTM Special Technical Publication
, Vol.
1463
,
2005
, p. 104.
36.
ASTM C882-05e1:
Standard Test Method for Bond Strength of Epoxy-Resin Systems Used With Concrete by Slant Shear
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2005
.
37.
Robins
,
P.
and
Austin
,
S.
, “
A Unified Failure Envelope from the Evaluation of Concrete Repair Bond Tests
,”
Mag. Concr. Res.
, Vol.
47
, No.
170
,
1995
, pp.
57
68
. https://doi.org/10.1680/macr.1995.47.170.57
38.
ASTM C1583/C1583M-13:
Standard Test Method for Tensile Strength of Concrete Surfaces and the Bond Strength or Tensile Strength of Concrete Repair and Overlay Materials by Direct Tension (Pull-Off Method)
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2013
.
39.
ASTMC230/C230M-08:
Standard Specification for Flow Table for Use in Tests of Hydraulic Cement
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2008
.
40.
ASTMC31/C31M-09:
Standard Practice for Making and Curing Concrete Test Specimens in the Field
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2009
.
41.
International Concrete Repair Institute
,
Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings, and Polymer Overlays
,
International Concrete Repair Institute
,
Sterling, VA
,
1997
.
42.
ASTME965-96(
2006
):
Standard Test Method for Measuring Pavement Macrotexture Depth Using a Volumetric Technique
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2006
.
43.
ACI 318-11,
2011
, “
Building Code Requirements for Structural Concrete and Commentary
,”
ACI Committee 318
,
American Concrete Institute
,
Farmington, MI
.
44.
Santos
,
P. M. D.
and
Julio
,
E. N. B. S.
, “
Factors Affecting Bond Between New and Old Concrete
,”
ACI Mater. J.
, Vol.
108
, No.
4
,
2011
, pp.
449
456
.
45.
Kamen
,
A.
, “
Time Dependent Behaviour of Ultra High Performance Fibre Reinforced Concrete (UHPFRC)
,”
Proceedings of the 6th International Ph.D. Symposium in Civil Engineering
,
Zurich, Switzerland
, Aug 23–26,
2006
,
Swiss Federal Institute of Technology in Zurich, ETH
,
Zürich, Switzerland
.
46.
Morin
,
V.
,
Cohen Tenoudji
,
F.
,
Feylessoufi
,
A.
, and
Richard
,
P.
, “
Superplasticizer Effects on Setting and Structuration Mechanisms of Ultrahigh-Performance Concrete
,”
Cem. Concr. Res.
, Vol.
31
, No.
1
,
2001
, pp.
63
71
. https://doi.org/10.1016/S0008-8846(00)00428-2
47.
Morin
,
V.
,
Cohen-Tenoudji
,
F.
,
Feylessoufi
,
A.
, and
Richard
,
P.
, “
Evolution of the Capillary Network in a Reactive Powder Concrete During Hydration Process
,”
Cem. Concr. Res.
, Vol.
32
, No.
12
,
2002
, pp.
1907
1914
. https://doi.org/10.1016/S0008-8846(02)00893-1
48.
Bonaldo
,
E.
,
Barros
,
J. A. O.
, and
Lourenco
,
P. B.
, “
Bond Characterization Between Concrete Substrate and Repairing SFRC Using Pull-Off Testing
,”
Int. J. Adhes. Adhesives
, Vol.
25
,
2005
, pp.
463
474
. https://doi.org/10.1016/j.ijadhadh.2005.01.002
49.
ANSYS User's Manual Revision 14.0
. (
2011
).
ANSYS, Inc.
,
Canonsburg, PA
.
50.
Shann
,
S. V.
,
2012
, “
Application of Ultra High Performance Concrete (UHPC) as a Thin-Bonded Overlay for Concrete Bridge Decks
,” M.S. thesis,
Michigan Technological University
, Houghton, MI.
51.
Issa
,
M. A.
,
Alhassan
,
M. A.
, and
Shabila
,
H.
, “
High-Performance Plain and Fibrous Latex-Modified and Microsilica Concrete Overlays
,”
J. Mater. Civ. Eng.
, Vol.
20
, No.
12
,
2008
, pp.
742
753
. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:12(742)
52.
Issa
,
M. A.
and
Alhassan
,
M. A.
, “
Modeling of Bond Stresses of Overlay-Bridge Deck System
,”
Transportation Research Record. 2113
,
Transportation Research Board
,
Washington, D.C.
,
2009
, pp.
72
82
.
53.
Tang
,
F. F.
, “
Overlay for Concrete Segmental Box-Girder Bridges
,”
J. Bridge Eng.
, Vol.
5
, No.
4
,
2005
, pp.
311
321
. https://doi.org/10.1061/(ASCE)1084-0702(2000)5:4(311)
54.
Kim
,
H.
, “
Mesh-Independent Fracture Modeling for Overlay Pavement System Under Heavy Aircraft Gear Landings
,”
J. Transp. Eng.
, Vol.
126
, No.
4
,
2010
, pp.
370
378
. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000101
55.
Walter
,
R.
,
Olesen
,
J. F.
,
Stang
,
H.
, and
Vejrum
,
T.
, “
Analysis of an Orthotropic Deck Stiffened With a Cement-Based Overlay
,”
J. Bridge Eng.
, Vol.
12
, No.
3
,
2007
, pp.
350
363
. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:3(350)
56.
Tran
,
Q. T.
,
Toumi
,
A.
, and
Granju
,
J. L.
, “
Experimental and Numerical Investigation of the Debonding Interface Between an Old Concrete and an Overlay
,”
Mater. Struct.
, Vol.
39
,
2006
, pp.
379
389
. https://doi.org/10.1007/s11527-005-9051-2
57.
Xu
,
Q.
,
Sun
,
Z.
,
Wang
,
H.
, and
Shen
,
A.
, “
Laboratory Testing Material Property and FE Modeling Structural Response of PAM-Modified Concrete Overlay on Bridges
,”
J. Bridge Eng.
, Vol.
14
, No.
1
,
2009
, pp.
26
35
. https://doi.org/10.1061/(ASCE)1084-0702(2009)14:1(26)
58.
Nowak
,
A. S.
and
Eom
,
J.
, “
Verification of Girder Distribution Factors for Steel Girder Bridges
,” Report No. MDOT 2000-341 DIR,
Michigan Department of Transportation
, Lansing, MI,
2001
.
59.
Harris
,
D. K.
, “
Assessment of Flexural Lateral Load Distribution Methodologies for Stringer Bridges
,”
Eng. Struct.
, Vol.
32
, No.
11
,
2010
, pp.
3443
3451
. https://doi.org/10.1016/j.engstruct.2010.06.008
60.
Harris
,
D. K.
and
Gheitasi
,
A.
, “
Implementation of an Energy-Based Stiffened Plate Formulation for Lateral Load Distribution Characteristics of Girder-Type Bridges
,”
Eng. Struct.
, Vol.
54
,
2013
, pp.
168
179
. https://doi.org/10.1016/j.engstruct.2013.04.002
61.
Gheitasi
,
A.
and
Harris
,
D. K.
, “
Failure Characteristics and Ultimate Load-Carrying Capacity of Redundant Composite Steel Girder Bridges: Case Study
,” J. Bridge Eng. (in press).
62.
Gheitasi
,
A.
and
Harris
,
D. K.
, “
Overload Flexural Distribution Behavior in Composite Steel Girder Bridges
,” J. Bridge Eng. (in press).
This content is only available via PDF.
You do not currently have access to this content.