Abstract

There are numerous areas of materials specifications accepted or not covered regarding current specifications in ASTM, American Concrete Institute (ACI), or other recognized standards groups. In the past, specifications made utilizing ASTM C150 portland cement and ASTM C33 aggregates were the norm. Utilization of supplementary cementitious materials added to the potential for quality improvements and cost control. Further expansion occurred with use of recycled aggregates, re-graded and blended with conventional aggregates. Newer cements and aggregates have been researched, produced on a limited basis and tested. Some have been proven to be successful and are in use commercially. Some are used in Ultra High Performance Concretes. The use of these materials has been hindered by lack of inclusion in specifications. In those cases that have had specifications for these newer materials developed, lack of acceptance by building codes, departments of transportation, and others has hindered their use. Efforts are needed to develop standard specifications as needed along with efforts to gain acceptance by building codes and transport bodies. It will describe acceptances gained and further efforts needed.

References

1.
World Energy Outlook 2013 Fact Sheet
,” http://www.worldenergyoutlook.org (Last accessed 13 Oct
2013
).
2.
Unified Facilities Guide Specifications (UFGS)
, “
Whole Building Design Guide
,” http://www.wbdg.org/ccb (Last accessed 10 Oct
2013
).
3.
ASTM C595-12
:
Standard Specification for Blended Hydraulic Cements
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2012
.
4.
ASTM C845-12
:
Standard Specification for Expansive Hydraulic Cement
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2012
.
5.
ASTM C 1157/C1157M-11
:
Performance Specification for Hydraulic Cement
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2011
.
6.
ASTM C989-00
:
Standard Specification for Slag Cement
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2012
.
7.
ASTM C1600/C1600M-11
:
Standard Specification for Rapid Hardening Hydraulic Cement
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2013
.
8.
Hicks
,
J. K.
,
CCP Beneficial Use Versus Production
,
American Coal Ash Association
,
Farmington Hills, MI
,
2009
.
9.
Huntzinger
,
D. N.
and
Eatmon
,
T. D.
, “
A Life-Cycle Assessment of Portland Cement Manufacturing: Comparing the Traditional Process With Alternative Technologies
,”
J. Cleaner Prod.
, Vol.
17
, No.
7
,
2009
, pp.
668
675
. https://doi.org/10.1016/j.jclepro.2008.04.007
10.
Floris
,
V.
and
Hicks
J. K.
, “
Environmental Benefits of Coal Combustion Products
,”
Proceedings of the Pittsburgh Coal Conference
,
Pittsburg, PA
, Sept 20–23,
2009
.
11.
ASCE
,
2013
, “
ASCE Infrastructure Report Card
,” http://www.infrastructurereportcard.org (Last accessed 18 Aug
2013
).
12.
Phair
,
J. W.
, “
Sustainable Chemistry for Sustainable Cement Production and Use
,”
Sustain. Chem.
, Vol.
8
,
2006
, pp.
763
780
.
13.
Floris
,
V.
, “
Challenges and Achievements of Coal-Based Power Generation: Moving Towards a Holistic and Sustainable Approach
,”
Proceedings of the International Association of Energy Economics
,
Santiago, Chile
, Nov 15–21,
2009
.
14.
U. S. Energy Information Administration
,
2010
, “
CO2 Forecast Highlights
,” www.eia.doe.gov/international (Last accessed 19 Aug
2013
).
15.
ACAA
,
2011 Fly Ash Survey
,
ACAA
,
Farmington Hills, MI
,
2012
.
16.
EIA
,
2007
, “
Climate Change
,” www.epa.gov/climatechange/emissions/usgginventory.html (Last accessed 15 Aug
2013
).
17.
Floris
,
V.
and
Hicks
,
J. K.
, “
Environmental Benefits of Coal Combustion Products
,”
Proceedings of the Pittsburgh Coal Conference
,
Pittsburg, PA
, Sept 20–23,
2009
.
18.
American Coal Ash Association (ACAA)
, “
2011 Fly Ash Survey
,”
ACAA
,
Farmington Hills, MI
,
2012
.
19.
Touzo
,
B.
and
Espinosa
,
B.
,
2009
, “
Glasser Symposium
,” http://www.abdn.ac.uk/chemistry/cement-symposium/abstracts (Last accessed 19 Aug
2013
).
20.
Unified Facilities Guide Specifications (UFGS)
, “
Whole Building Design Guide
,” http://www.wbdg.org/ccb, (Last accessed 10 Oct
2013
).
21.
Davidovits
J.
, “
Mineral Polymers and Methods of Making Them
,” U.S. Patent No. 4,349,386 (
1982
).
22.
Davidovits
J.
, “
Synthetic Mineral Polymer Compound of the Silicoaluminates Family and Preparation Process
,” U.S. Patent No. 4,472,199 (
1984
).
23.
Davidovits
,
J.
, “
Geopolymers: Inorganic Polymeric New Materials
,”
J. Therm. Anal.
, Vol.
37
, No.
8
,
1991
, pp.
1633
1656
. https://doi.org/10.1007/BF01912193
24.
Hicks
J. K.
and
Scott
R. M.
, “
Rapid Hardening Hydraulic Cement from Subbituminous Fly Ash and Products Thereof
,” U.S. Patent 7,288,148 B2 (
2007
).
25.
Fernández-Jiménez
,
A.
and
Palomo
,
A.
, “
Nanostructure/Microstructure of Fly Ash Geopolymers
,”
Geopolymers: Structure, Processing, Properties, and Industrial Applications
,
Provis
J. L.
and
Deventer
J. S. J.
, Eds.,
CRC Press
,
Boca Raton, FL
,
2009
, pp.
89
117
.
26.
Su
,
M.
,
Wang
,
Y.
,
Zhang
,
L.
and
Li
,
D.
, “
Preliminary Study on the Durability of Sulfo/Ferroaluminate Cements
,”
Proceedings of the 10th International Congress on the Chemistry of Cement
,
Gothenburg, Sweden
, June 2–6,
1997
.
27.
Hicks
,
J. K.
, “
Utilization of Coal Combustion By-Products and Sustainable Materials for Production of Hydraulic Cement
,”
Industrial Waste
,
Intech
,
Rijeka, Croatia
,
2012
.
28.
Van Deventer
,
J. S. J.
,
Duxson
,
P.
, and
Provi
,
J.
, “
The Role of Research in the Commercial Development of Geopolymer Concrete
,”
Proceedings of the International Cement Microscopy Association, March 2010 Conference
,
New Orleans, LA
, March 28–31,
2010
.
29.
Davidovits
,
J.
, “
Geopolymers: Inorganic Polymeric New Materials
,”
J. Therm. Anal.
, Vol.
37
, No.
8
,
1991
, pp.
1633
1656
.
30.
Palomo
,
A.
and
López dela Fuente
,
J. I.
, “
Alkali-Activated Cementitious Materials: Alternative Matrices for the Immobilization of Hazardous Wastes. Part I. Stabilization of Boron
,”
Cem. Concr. Res.
, Vol.
33
,
2003
, pp.
285
295
.
31.
Roy
,
D. M.
, “
Alkali-Activated Cements: Opportunities and Challenges
,”
Cem. Concr. Res.
, Vol.
29
, No.
2
,
1999
, pp.
249
254
. https://doi.org/10.1016/S0008-8846(98)00093-3
32.
Shi
,
C.
and
Day
,
R. L.
, “
Some Factors Affecting Early Hydration of Alkali-Slag Cements
,”
Cem. Concr. Res.
, Vol.
26
, No.
3
,
1996
, pp.
439
447
. https://doi.org/10.1016/S0008-8846(96)85031-9
33.
Krizan
,
D.
and
Zivanovic
,
B.
, “
Effect of Dosage and Modulus of Water Glass on Early Hydration of Alkali-Slag Cements
,”
Cem. Concr. Res.
, Vol.
32
, No.
8
,
2002
, pp.
1181
1188
. https://doi.org/10.1016/S0008-8846(01)00717-7
34.
Oh
,
J. E.
,
Monteiro
,
P. J. M.
,
Jun
,
S. S.
,
Choi
,
S.
, and
Clark
,
S. M.
, “
The Evolution of Strength and Crystalline Phases for Alkali Activated Ground Blast Furnace Slag and Fly Ash-Based
,”
Geopolymers, Cement and Concrete Research
, Vol.
40
,
2010
, pp.
189
196
.
35.
Chaunsali
,
P.
and
Peethamparan
,
S.
, “
Evolution of Strength, Microstructure and Mineralogical Composition of a CKD-GGBFS Binder
,”
Cem. Concr. Res.
, Vol.
41
, No.
2
,
2010
, pp.
197
208
.
36.
Patel
,
R.
,
Kinney
,
F.
and
Schumacher
,
G.
, “
Green Concrete Using 100 % Fly Ash Based Hydraulic Binder
,”
Proceedings of the 2012 International Concrete Sustainability Conference
,
Seattle, WA
, May,
2012
, pp.
1
14
.
37.
Song
,
S.
,
Sohn
,
D.
,
Jennings
,
H. M.
, and
Mason
,
T. O.
, “
Hydration of Alkali-Activated Ground Granulated Blast Furnace Slag
,”
J. Mater. Sci.
, Vol.
35
, No.
1
,
2000
, pp.
249
257
. https://doi.org/10.1023/A:1004742027117
38.
Atis
,
C. D.
,
Bilim
,
C.
,
Celik
,
O.
, and
Karahan
,
O.
, “
Influence of Activator on the Strength and Drying Shrinkage of Alkali-Activated Slag Mortar
,”
Construction and Building Materials
, Vol.
23
,
2000
, pp.
548
555
.
39.
Fernández-Jiménez
,
A.
and
Puertas
,
F.
, “
The Alkali–Silica Reaction in Alkali-Activated Granulated Slag Mortars With Reactive Aggregate
,”
Cem. Concr. Res.
, Vol.
32
, No.
7
,
2002
, pp.
1019
1024
. https://doi.org/10.1016/S0008-8846(01)00745-1
40.
Shi
,
C.
,
Krivenko
,
P. V.
, and
Roy
,
D.
,
Alkali-Activated Cements and Concretes
,
Taylor and Francis
,
London
,
2006
.
41.
Scrivener
,
K. L.
and
Capmas
,
A.
, “
Calcium Aluminate Cements
,”
Lea’s Chemistry of Cement and Concrete
,
Hewlett
P. C.
, Ed.,
Elsevier
,
Amsterdam
,
1998
, pp.
713
782
.
42.
Juenger
,
M. C. G.
,
Winnefeld
,
F.
,
Provis
,
J. L.
, and
Ideker
,
J. H.
, “
Advances in Alternative Cementitious Binders
,”
Cem. Concr. Res.
, Vol.
41
, No.
12
,
2011
, pp.
1232
1243
. https://doi.org/10.1016/j.cemconres.2010.11.012
43.
Gartner
,
E.
, “
Industrially Interesting Approaches to Low-CO2 Cements
,”
Cem. Concr. Res.
, Vol.
34
, No.
9
,
2004
, pp.
1489
1498
. https://doi.org/10.1016/j.cemconres.2004.01.021
44.
Palomo
,
A.
and
López dela Fuente
,
J. I.
, “
Alkali-Activated Cementitious Materials: Alternative Matrices for the Immobilization of Hazardous Wastes. Part I. Stabilization of Boron
,”
Cement and Concrete Research
, Vol.
33
,
2003
, pp.
285
295
.
45.
Juenger
,
M.
and
Chen
,
I.
, “
Composition-Property Relationships in Calcium Sulfoaluminate Cements
,”
Proceedings of the 13th International Congress on the Chemistry of Cement
,
Madrid, Spain
, July 4–8,
2011
.
46.
Fentiman
,
C. H.
,
Scrivener
,
K. L.
and
Mangabhai
,
R. J.
, Eds.,
Calcium Aluminate Cements: Proceedings of the Centenary Conference
,
IHS BRE Press
,
Avignon, France
,
2008
.
47.
Klein
A.
, “
Expansive and Shrinkage-Compensated Cements
,” U.S. Patent 3,251,701 (
1966
).
48.
Glasser
,
F. P.
, and
Zhang
,
L.
, “
High-Performance Cement Matrices Based on Calcium Sulfoaluminate-Belite Compositions
,”
Cem. Concr. Res.
, Vol.
31
, No.
12
,
2001
, pp.
1881
1886
. https://doi.org/10.1016/S0008-8846(01)00649-4
49.
Quillin
,
K.
, “
Performance of Belite-Sulfoaluminate Cements
,”
Cem. Concr. Res.
, Vol.
31
, No.
9
,
2001
, pp.
1341
1349
. https://doi.org/10.1016/S0008-8846(01)00543-9
50.
Mehta
,
P. K.
, “
Investigations on Energy-Saving Cements
,”
World Cem. Technol.
, Vol.
11
, No.
4
,
1980
, pp.
166
177
.
51.
Popescu
,
C. D.
,
Muntean
,
M.
, and
Sharp
,
J. H.
, “
Industrial Trial Production of Low Energy Belite Cement
,”
Cem. Concrete Compos.
, Vol.
25
,
2003
, pp.
689
693
.
52.
Juenger
,
M. C. G.
,
Winnefeld
,
F.
,
Provis
,
J. L.
, and
Ideker
,
J. H.
, “
Advances in Alternative Cementitious Binders
,”
Cement and Concrete Research
, Vol.
41
, No.
12
,
2011
, pp.
1232
1243
.
53.
Sharp
,
J. H.
,
Lawrence
,
C. D.
, and
Yang
,
R.
, “
Calcium Sulfoaluminate Cements—Low-Energy Cements, Special Cements, or What?
,”
Adv. Cem. Res.
,
11
, No.
1
,
1999
, pp.
3
13
. https://doi.org/10.1680/adcr.1999.11.1.3
54.
Rajabipour
,
F.
,
Maraghechi
,
H.
, and
Fischer
,
G.
, “
Investigating the Alkali Silica Reaction of Recycled Glass Aggregates in Concrete Materials
,”
ASCE J. Mater. Civ. Eng.
, Vol.
22
, No.
12
,
2010
, pp.
1201
1208
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000126
55.
Palou
,
M.
and
Majling
,
J.
, “
Preparation of the High Iron Sulfoaluminate Belite Cements From Raw Mixtures Incorporating Industrial Wastes
,”
Cer.–Silikáty
, Vol.
39
, No.
2
,
1995
, pp.
41
80
.
56.
Phair
,
J. W.
and
Gartner
,
E.
, “
Industrially Interesting Approaches to ‘Low-CO2’ Cements
,”
Cem. Concr. Res.
, Vol.
34
,
2006
, pp.
1489
1498
.
57.
Harrison
,
A. J. W.
, “
Reactive Magnesium Oxide Cements
,” U.S. Patent No. 2003/0041785A1 (
2003
).
58.
Reindl
,
J.
,
2003
, “
Reuse/Recycling of Glass Cullet for Non-Container Uses
,” http://www.glassonline.com/infoserv/Glass_recycle_reuse/Glass_reuse_recycling_doc1.pdf (Last accessed 13 Oct.
2013
).
59.
Polley
,
C.
,
Cramer
,
S. M.
, and
De La Cruz
,
R. V.
, “
Potential for Using Waste Glass in Portland Cement Concrete
,”
ASCE J. Mater. Civ. Eng.
, Vol.
10
,
1998
, pp.
210
219
. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:4(210)
60.
Jin
,
W.
,
Meyer
,
C.
, and
Baxter
,
S.
, “
Glascrete—Concrete With Glass Aggregate
,”
ACI Mater. J.
, Vol.
97
, No.
2
,
2000
, pp.
208
213
.
61.
Rajabipour
,
F.
,
Maraghechi
,
H.
, and
Fischer
,
G.
, “
Investigating the Alkali Silica Reaction of Recycled Glass Aggregates in Concrete Materials
,”
ASCE Journal of Materials in Civil Engineering
, Vol.
22
, No.
12
,
2010
, pp.
1201
1208
.
62.
Shao
,
Y. X.
,
Leforta
,
T.
,
Morasa
,
S.
, and
Rodriguez
,
D.
, “
Studies on Concrete Containing Ground Waste Glass
,”
Cem. Concr. Res.
, Vol.
30
, No.
1
,
2000
, pp.
91
100
. https://doi.org/10.1016/S0008-8846(99)00213-6
63.
Byars
,
E. A.
,
Morales
,
B.
, and
Zhu
,
H. Y.
,
2004
, “
Conglasscrete II
,”
GLA0015-007
,
University of Sheffield
,
Sheffield, UK
.
64.
Shi
,
C. J.
,
Wua
,
Y.
,
Rieflerb
,
C.
, and
Wang
,
H.
, “
Characteristics and Pozzolanic Reactivity of Glass Powders
,”
Cem. Concr. Res.
, Vol.
35
, No.
5
,
2005
, pp.
987
993
. https://doi.org/10.1016/j.cemconres.2004.05.015
65.
Shayan
,
A.
and
Xu
,
A. M.
, “
Performance of Glass Powder as a Pozzolanic Material in Concrete: A Field Trial on Concrete Slabs
,”
Cem. Concr. Res.
, Vol.
36
, No.
3
,
2006
, pp.
457
468
. https://doi.org/10.1016/j.cemconres.2005.12.012
66.
Hicks
,
J. K.
,
Riley
,
M.
,
Schumacher
,
G.
,
Patel
,
R.
, and
Sampson
,
P.
, “
Utilization of Recycled Materials for High Quality Cements and Products
,”
Proceedings of the World of Coal Ash Conference
,
Lexington, KY
, May 4–7,
2009
.
67.
U. S. Energy Information Administration
, “
2010 CO2 Forecast Highlights
,” www.eia.doe.gov/international (Last accessed 1 Aug
2013
).
This content is only available via PDF.
You do not currently have access to this content.