Abstract

Many results on performance of nanosilica in concrete have been reported by researchers in the domain of strength enhancement to reduction. A possible reason could be the vastly different specific surfaces of nanosilica materials used by different researchers. In this research, the effects of two colloidal nanosilicas, with specific surface areas of 80 m2/g and 500 m2/g on properties of concrete are investigated. The performance of these nanosilicas, which are specifically produced for use in concrete, are compared to that of microsilica. Additionally, for having a better understanding of the behavior of concrete in the presence of high specific surface area nanosilica, mortar specimens containing nanosilica with 500 m2/g specific surface area were also prepared and tested. Results show that the use of nanosilica particles causes a more severe reduction in workability of mixes compared to micro. The reduction in workability increased with increasing dosage and specific surface area of nanosilica. Compared to micro, the nanosilica materials resulted in higher strength enhancements relative to control at the age of 3 and 7 d. However, at 28 d the difference became small, and at 56 d the nanosilicas and micro had similar performances. Results of transverse electron microscopy (TEM) revealed that the state of nanosilica agglomeration with 80 m2/g is almost the same as microsilica; however, nanosilica particles with 500 m2/g are highly agglomerated compare with the other two materials because of the presence of large amounts of nanosilica. Scanning electron microscopy (SEM) results at 28 d also showed high levels of heterogeneity in the distribution of hydration products, which is the result of poor nanosilica dispersion; this phenomenon consequently decreased the compressive strength of specimens.

References

1.
Chrusciel
,
J.
and
Slusarski
,
L.
, “
Synthesis of Nanosilica by the Sol–Gel Method and Its Activity Toward Polymers
,”
Mater. Sci.
, Vol.
21
, No.
4
,
2003
, pp.
461
469
.
2.
Bhushan
,
B.
,
Springer Handbook of Nanotechnology
,
Springer
,
New York
,
2004
.
3.
Sobolev
,
K.
,
Flores
,
I.
,
Torres-Martinez
,
L.M.
,
Valdez
,
P.L.
,
Zarazua
,
E.
, and
Cuellar
,
E.L.
, “
Development of Nano-SiO2 Based Admixtures for High-Performance Cement-Based Materials
,”
Progress report
,
CONACYT
,
Mexico
,
2006
, pp.
139
148
.
4.
Dalton
,
A.B.
,
Collins
,
S.
,
Razal
,
S.J.
,
Munoz
,
E.
,
Ebron
,
V.H.
,
Kim
,
B.G.
,
Coleman
,
J.N.
,
Ferraris
,
J.P.
, and
Baughman
,
R.H.
, “
Continuous Carbon Nanotube Composite Fibers: Properties Potential Applications, and Problems
,”
J. Mater. Chem.
, Vol.
14
, No.
1
,
2004
, pp.
1
3
. https://doi.org/10.1039/b312092a
5.
Alexander
,
M.G.
and
Magee
,
B.J.
, “
Durability Performance of Concrete Containing Condensed Silica Fume
,”
Cement Concrete Res.
, Vol.
29
, No.
6
,
1999
, pp.
917
922
. https://doi.org/10.1016/S0008-8846(99)00064-2
6.
Mazloom
,
M.
,
Ramezanianpour
,
A.A.
, and
Brooks
,
J.J.
, “
Effect of Silica Fume on Mechanical Properties of High-Strength Concrete
,”
Cement Concrete Comp.
, Vol.
26
, No.
4
,
2004
, pp.
347
357
. https://doi.org/10.1016/S0958-9465(03)00017-9
7.
Khaloo
,
A.R.
,
Gholizadeh
,
V.A.
, and
Bolhassani
,
M.
, “
Mechanical and Microstructural Properties of Cement Paste Incorporating Nano Silica Particles With Various Specific Surface Areas
,”
Key Eng. Mater.
, Vol.
478
,
2011
, pp.
19
24
. https://doi.org/10.4028/www.scientific.net/KEM.478.19
8.
Kazuaki
,
Y.
,
Yasuhiko
,
A.
, and
Hiroyo
,
S.
, “
Synthesis of Nano Silica Particles and Their Abrasive Properties for Polishing Silicon Wafers
,”
Bull. Nippon Bunri Univ.
, Vol.
32
, No.
1
,
2004
, pp.
31
37
.
9.
Hui
,
L.
,
Hui-Gang
,
X.
,
Jie
,
Y.
, and
Jinping
,
O.
, “
Microstructure of Cement Mortar With Nano-Particles
,”
Composites
, Vol.
35
, No.
2
,
2004
, pp.
185
189
.
10.
Kuo
,
W.
,
Lin
,
K.
,
Chang
,
W.
, and
Luo
,
H.
, “
Effects of Nano-Materials on Properties of Waterworks Sludge Ash Cement Paste
,”
J. Ind. Eng. Chem.
, Vol.
12
, No.
5
,
2006
, pp.
702
709
.
11.
Aiu
,
M.
, “
The Chemistry and Physics of Nano-Cement
,”
Research Project (NSF-REU)
,
University of Delaware
,
Newark, DE
,
2006
.
12.
Bolhassani
,
M.
and
Samani
,
M.R.
, “
Effect of Type, Size and Dosage of Nanosilica and Microsilica on Properties of Cement Paste and Mortar
,”
ACI Mater. J.
, Vol.
112
, No.
2
,
2015
, pp.
259
266
.
13.
Shih
,
J.Y.
,
Chang
,
T.P.
, and
Hsiao
,
T.C.
, “
Effect of Nanosilica on Characterization of Portland Cement Composite
,”
Mater. Sci. Eng.: A
, Vol.
424
, Nos.
1–2
,
2006
, pp.
266
274
. https://doi.org/10.1016/j.msea.2006.03.010
14.
Qing
,
Y.
,
Zenan
,
Z.
,
Li
,
S.
, and
Rongshen
,
C.
, “
A Comparative Study on the Pozzolanic Activity Between Nano-SiO2 and Silica Fume
,”
J. Wuhan Univ. Technol. – Mater. Sci. Ed.
, Vol.
21
, No.
3
,
2006
, pp.
153
157
. https://doi.org/10.1007/BF02840907
15.
Qing
,
Y.
,
Zenan
,
Z.
,
Li
,
S.
, and
Rongshen
,
C.
, “
Influence of Nano-SiO2 Addition on Properties of Hardened Cement Paste as Compared With Silica Fume
,”
Constr. Build. Mater.
, Vol.
21
, No.
3
,
2007
, pp.
539
545
. https://doi.org/10.1016/j.conbuildmat.2005.09.001
16.
Lin
,
D.F.
,
Lin
,
K.L.
,
Chang
,
W.C.
,
Luo
,
H.L.
, and
Cai
,
M.Q.
, “
Improvements of Nano-SiO2 on Sludge/Fly Ash Mortar
,”
Waste Manage.
, Vol.
28
, No.
6
,
2008
, pp.
1081
1087
. https://doi.org/10.1016/j.wasman.2007.03.023
17.
Senff
,
L.
,
Labrincha
,
J.A.
,
Ferreira
,
V.M.
,
Hotza
,
D.
, and
Repette
,
W.L.
, “
Characteristics of Cement Mortar With Nano-SiO2 Particles
,”
Constr. Build. Mater.
, Vol.
23
, No.
7
,
2009
, pp.
2487
2491
. https://doi.org/10.1016/j.conbuildmat.2009.02.005
18.
Jo
,
B.W.
,
Kim
,
C.H.
,
Tae
,
G.H.
, and
Park
,
J.B.
, “
Characteristics of Cement Mortar With Nano-SiO2 Particles
,”
Constr. Build. Mater.
, Vol.
21
, No.
6
,
2007
, pp.
1351
1355
. https://doi.org/10.1016/j.conbuildmat.2005.12.020
19.
Li
,
H.
,
Xiao
,
H.G.
, and
Ou
,
J.P.
, “
A Study on Mechanical and Pressure-Sensitive Properties of Cement Mortar With Nanophase Materials
,”
Cement Concrete Res.
, Vol.
34
, No.
3
,
2004
, pp.
435
438
. https://doi.org/10.1016/j.cemconres.2003.08.025
20.
Sobolev
,
K.
,
Flores
,
I.
,
Hermosillo
,
L.
, and
Torres-Martinez
,
L.M.
, “
Application of Nanomaterials in High-Performance Cement Composites
,”
Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives
,
Sobolev
K.
and
Shah
S.P.
, Eds., Denver, CO, Nov 7,
2008
,
American Concrete Institute
,
Farmington Hills, MI
, pp.
93
120
.
21.
Ramezanianpour
,
A.A.
,
Moravvedj
,
D.M.
, and
Moaddi
,
F.
, “
Effect of Nanosilica and Microsilica on Durability of Concrete
,”
Eighth International Congress of Civil Engineering
,
Shiraz, Iran
, June 15,
2008
.
22.
Sadrmomtazi
,
A.
,
Fasihi
,
A.
,
Balalaei
,
F.
, and
Haghi
,
A.
, “
Investigation of Mechanical and Physical Properties of Mortars Containing Silica Fume and Nano-SiO2
,”
Proceedings of the Third International Conference on Concrete & Development
,
Tehran, Iran
, April 27–29,
2008
, pp.
1153
1161
.
23.
Li
,
H.
,
Zhang
,
M.H.
, and
Ou
,
J.P.
, “
Abrasion Resistance of Concrete Containing Nano-Particles for Pavement
,”
Wear
, Vol.
260
, Nos.
11–12
,
2006
, pp.
1262
1266
. https://doi.org/10.1016/j.wear.2005.08.006
24.
Baomin
,
W.
,
Lijiu
,
W.
, and
Lai
,
F.C.
, “
Freezing Resistance of HPC With Nano-SiO2
,”
J. Wuhan Univ. Technol. – Mater. Sci. Ed.
, Vol.
23
, No.
1
,
2008
, pp.
85
88
.
25.
ASTM C150
:
Standard Specification for Portland Cement
,
ASTM International
,
West Conshohocken, PA
,
2007
,http://www.astm.org.
26.
RILEM
, “
CPC 11.2 Absorption of Water by Concrete by Capillarity
,”
RILEM Recommendations for the Testing and Use of Constructions Materials
,
Chapman & Hall
,
London
,
1994
, pp.
34
35
.
This content is only available via PDF.
You do not currently have access to this content.