Abstract

The service life of many concrete structures depends upon their resistance to chloride ingress. Service life models estimate the time required for chloride ions to reach the reinforcing steel, to build up a critical concentration, and to initiate corrosion. Fick’s second law and the Nernst–Planck equation are two of the more popular methods that are used to estimate chloride ingress. While chloride ions are usually the primary consideration, in general they are not present by themselves. The co-present cations and anions can influence the rate of chloride ingress. This paper discusses how the apparent chloride diffusion coefficient, based on Fick’s second law, is dependent on the chemical composition and concentration of the ponding solutions. This study examines the influence of the chemical composition and concentration of solutions on the chloride binding capacity, on the consequential microstructural changes as determined with scanning electron microscopy using energy dispersive X-ray spectra (SEM-EDS), on the surface charges of the pore walls, and on the overall chloride ingress of the concrete materials. Chloride ingress predictions based on the Nernst–Planck equation were also compared with the experimental chloride profiles. The Nernst–Planck approach provided good predictions at low salt concentrations (less than 1.0 mol/L NaCl) using a single porosity, tortuosity, and binding approach. At higher concentrations, the binding and change of microstructure was under-predicted, and thus the chloride ingress was over-estimated.

References

1.
Luping
,
T.
and
Nilsson
,
L.-O.
, “
Chloride Binding Capacity and Binding Isotherms of OPC Pastes and Mortars
,”
Cem. Concr. Res.
, Vol.
23
,
1993
, pp.
247
253
. https://doi.org/10.1016/0008-8846(93)90089-R
2.
Delagrave
,
A.
,
Marchand
,
J.
,
Ollivier
,
J.-P.
,
Julien
,
S.
, and
Hazrati
,
K.
, “
Chloride Binding Capacity of Various Hydrated Cement Paste Systems
,”
Adv. Cem. Based Mater.
, Vol.
6
, No.
1
,
1997
, pp.
28
35
. https://doi.org/10.1016/S1065-7355(97)90003-1
3.
Olsson
,
N.
,
Baroghel-Bouny
,
V.
,
Nilsson
,
L.-O.
, and
Thiery
,
M.
, “
Non-Saturated Ion Diffusion in Concrete—A New Approach to Evaluate Conductivity Measurements
,”
Cem. Concr. Compos.
, Vol.
40
,
2013
, pp.
40
47
. https://doi.org/10.1016/j.cemconcomp.2013.04.001
4.
Tuutti
,
K.
,
Corrosion of Steel in Concrete
,
Swedish Cement and Concrete Research Institute
,
Stockholm, Sweden
,
1982
.
5.
Bentur
,
A.
,
Diamond
,
S.
, and
Berke
,
N.
,
Steel Corrosion in Concrete
, 1st ed.,
CRC Press
,
Boca Raton, FL
,
1998
.
6.
Dickson
,
A.G.
and
Goyet
,
C.
,
Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water
,
Carbon Dioxide Information and Analysis Center
,
Oak Ridge, TN
,
1994
.
7.
Tritthart
,
J.
, “
Chloride Binding in Cement II. The Influence of the Hydroxide Concentration in the Pore Solution of Hardened Cement Paste on Chloride Binding
,”
Cem. Concr. Res.
, Vol.
19
, No.
5
,
1989
, pp.
683
691
. https://doi.org/10.1016/0008-8846(89)90039-2
8.
Arya
,
C.
,
Buenfeld
,
N.R.
, and
Newman
,
J.B.
, “
Factors Influencing Chloride–Binding in Concrete
,”
Cem. Concr. Res.
, Vol.
20
, No.
2
,
1990
, pp.
291
300
. https://doi.org/10.1016/0008-8846(90)90083-A
9.
Chatterji
,
S.
, “
Transportation of Ions Through Cement Based Materials. Part 3 Experimental Evidence for the Basic Equations and Some Important Deductions
,”
Cem. Concr. Res.
, Vol.
24
, No.
7
,
1994
, pp.
1229
1236
. https://doi.org/10.1016/0008-8846(94)90107-4
10.
Schweite
,
H.E.
,
Ludwig
,
U.
, and
Albeck
,
J.
, “
Combination of Calcium Chloride and Calcium Sulfate in Hydration of Aluminate–Ferritic Clinker Constituents
,”
Zem. Kalk Gips
, Vol.
5
,
1969
, pp.
225
234
.
11.
Frias
,
M.
,
Goñi
,
S.
,
García
,
R.
, and
Vigil de La Villa
,
R.
, “
Seawater Effect on Durability of Ternary Cements. Synergy of Chloride and Sulphate Ions
,”
Compos. Part B Eng.
, Vol.
46
,
2013
, pp.
173
178
. https://doi.org/10.1016/j.compositesb.2012.09.089
12.
Glass
,
G.K.
and
Buenfeld
,
N.R.
, “
The Influence of Chloride Binding on the Chloride Induced Corrosion Risk in Reinforced Concrete
,”
Corros. Sci.
, Vol.
42
, No.
2
,
2000
, pp.
329
344
. https://doi.org/10.1016/S0010-938X(99)00083-9
13.
Ehlen
,
M.
,
Thomas
,
M.
, and
Bentz
,
E.
, “
Life-365 Service Life Prediction ModelTM Version 2.0
,”
Concr. Int.
, Vol.
31
, No.
5
,
2009
, pp.
41
46
.
14.
Samson
,
E.
and
Marchand
,
J.
, “
Modeling the Transport of Ions in Unsaturated Cement-Based Materials
,”
Comput. Struct.
, Vol.
85
, Nos.
23–24
,
2007
, pp.
1740
1756
. https://doi.org/10.1016/j.compstruc.2007.04.008
15.
Collepardi
,
M.
,
Marcialis
,
A.
, and
Turriziani
,
R.
, “
Penetration of Chloride Ions Into Cement Pastes and Concretes
,”
J. Am. Ceram. Soc.
, Vol.
55
, No.
10
,
1972
, pp.
534
535
. https://doi.org/10.1111/j.1151-2916.1972.tb13424.x
16.
ASTM C1556-11a
:
Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2011
.
17.
Marchand
,
J.
and
Samson
,
E.
, “
Predicting the Service-Life of Concrete Structures— Limitations of Simplified Models
,”
Cem. Concr. Compos.
, Vol.
31
, No.
8
,
2009
, pp.
515
521
. https://doi.org/10.1016/j.cemconcomp.2009.01.007
18.
Bu
,
Y.
,
Luo
,
D.
,
Lin
,
B.
, and
Weiss
,
W.J.
, “
Chloride Ingress in Concrete in Different NaCl Concentrations: Comparing Fick’s Second Law & Nernst–Planck Approaches
,”
Proceedings of the 33rd Cement Concrete Science Conference
,
Portsmouth, UK
, Sept 2–3,
2013
.
19.
Diamond
,
S.
, “
Effects of Two Danish Flyashes on Alkali Contents of Pore Solutions of Cement–Flyash Pastes
,”
Cem. Concr. Res.
, Vol.
11
, No.
3
,
1981
, pp.
383
394
. https://doi.org/10.1016/0008-8846(81)90110-1
20.
Robinson
,
R.A.
,
Electrolyte Solutions
,
Academic Press
,
New York
,
1959
.
21.
Chatterji
,
S.
and
Kawamura
,
M.
, “
Electrical Double Layer, Ion Transport and Reactions in Hardened Cement Paste
,”
Cem. Concr. Res.
, Vol.
22
, No.
5
,
1992
, pp.
774
782
. https://doi.org/10.1016/0008-8846(92)90101-Z
22.
SIMCO Technologies Inc.
,
Lab3.0 User Guide
,
SIMCO Inc.
,
Quebec, QC
,
2013
.
23.
Conciatori
,
D.
,
Grégoire
,
É.
,
Samson
,
É.
,
Marchand
,
J.
, and
Chouinard
,
L.
, “
Statistical Analysis of Concrete Transport Properties
,”
Mater. Struct.
, Vol.
47
, Nos.
1–2
,
2013
, pp.
89
103
. https://doi.org/10.1617/s11527-013-0047-z
24.
Samson
,
E.
and
Marchand
,
J.
, “
Multiionic Approaches to Model Chloride Binding in Cementitious Materials
,”
Proceedings of the 2nd International Symposium on Advances in Concrete Through Science and Engineering
,
Quebec, QC
, Sept 11–13,
2006
, pp.
101
122
.
25.
Suryavanshi
,
A.K.
,
Scantlebury
,
J.D.
, and
Lyon
,
S.B.
, “
Mechanism of Friedel’s Salt Formation in Cements Rich in Tri-Calcium Aluminate
,”
Cem. Concr. Res.
, Vol.
26
, No.
5
,
1996
, pp.
717
727
. https://doi.org/10.1016/S0008-8846(96)85009-5
26.
Jones
,
M.R.
,
Macphee
,
D.E.
,
Chudek
,
J.A.
,
Hunter
,
G.
, and
Lannegrand
,
R.
, “
Studies Using Al MAS NMR of AFm and AFt Phases and the Formation of Friedel’s Salt
,”
Cem. Concr. Res.
, Vol.
33
, No.
2
,
2003
, pp.
177
182
. https://doi.org/10.1016/S0008-8846(02)00901-8
27.
Farnam
,
Y.
,
Wiese
,
A.
,
Dick
,
S.
,
Davis
,
J.
,
Bentz
,
D.
, and
Weiss
,
J.
, “
The Deleterious Effects of CaCl2 Deicing Salt on Concrete Exposed to Freeze-Thaw
,”
2014
(submitted).
28.
ASTM C231/C231M-14
:
Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2012
.
29.
ASTM C150–12
:
Standard Specification for Portland Cement
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2012
.
30.
ASTM C1202–10
:
Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2010
.
31.
Bu
,
Y.
,
Spragg
,
R.
, and
Weiss
,
W.J.
, “
Comparison of the Pore Volume in Concrete as Determined Using ASTM C642 and Vacuum Saturation
,”
Adv. Civ. Eng. Mater.
,
2014
(Accepted).
32.
Bella
,
C.D.
,
Villani
,
C.
,
Hausheer
,
E.
, and
Weiss
,
J.
, “
Chloride Transport Measurements for a Plain and Internally Cured Concrete Mixture
,”
ACI Spec. Publ.
, Vol.
290
,
2012
, pp.
1
16
. https://doi.org/10.1039/2042-0625
33.
ASTM C642–06
:
Standard Test Method for Density, Absorption, and Voids in Hardened Concrete
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2006
.
34.
SIMCO Technologies Inc.
Technical Guide Stadium R V2.9
,
SIMCO Technologies Inc.
,
Quebec, QC
,
2010
.
35.
Stutzman
,
P.E.
and
Clifton
,
J.R.
, “
Specimen Preparation for Scanning Electron Microscope
,”
Proceedings of the 21st International Conference on Cement Microscopy
,
Las Vegas, NV
, April 25–29,
1999
, pp.
10
22
.
36.
Mohammed
,
U.
,
Yamaji
,
T.
, and
Hamada
,
H.
, “
Chloride Diffusion, Microstructure, and Mineralogy of Concrete After 15 Years of Exposure in Tidal Environment
,”
ACI Mater. J.
, Vol.
99
,
2002
, pp.
256
263
.
37.
Santhanam
,
M.
,
Cohen
,
M.
, and
Olek
,
J.
, “
Differentiating Seawater and Groundwater Sulfate Attack in Portland Cement Mortars
,”
Cem. Concr. Res.
, Vol.
36
, No.
12
,
2006
, pp.
2132
2137
. https://doi.org/10.1016/j.cemconres.2006.09.011
38.
Justnes
,
H.
, “
A Review of Chloride Binding in Cementitious Systems
,”
Nord. Concr. Res. Publ.
, Vol.
21
,
1998
, pp.
48
63
.
39.
Brown
,
P.
and
Badger
,
S.
, “
The Distributions of Bound Sulfates and Chlorides in Concrete Subjected to Mixed NaCl, MgSO4, Na2SO4 Attack
,”
Cem. Concr. Res.
, Vol.
30
, No.
10
,
2000
, pp.
1535
1542
. https://doi.org/10.1016/S0008-8846(00)00386-0
40.
Ipavec
,
A.
,
Vuk
,
T.
,
Gabrovšek
,
R.
, and
Kaučič
,
V.
, “
Chloride Binding Into Hydrated Blended Cements: The Influence of Limestone and Alkalinity
,”
Cem. Concr. Res.
, Vol.
48
,
2013
, pp.
74
85
. https://doi.org/10.1016/j.cemconres.2013.02.010
41.
Arya
,
C.
and
Xu
,
Y.
, “
Effect of Cement Type on Chloride Binding and Corrosion of Steel in Concrete
,”
Cem. Concr. Res.
, Vol.
25
, No.
4
,
1995
, pp.
893
902
. https://doi.org/10.1016/0008-8846(95)00080-V
42.
Lea
,
F.M.
,
The Chemistry of Cement and Concrete
,
St. Martin’s Press
,
New York
,
1956
.
43.
Mather
,
B.
,
Effects of Seawater on Concrete
,
PN
,
Vicksburge, MS
,
1964
.
44.
Mehta
,
P.K.
, “
Mechanism of Expansion Associated With Ettringite Formation
,”
Cem. Concr. Res.
, Vol.
3
, No.
1
,
1973
, pp.
1
6
. https://doi.org/10.1016/0008-8846(73)90056-2
45.
Bonnaud
,
P.A.
,
Coasne
,
B.
, and
Pellenq
,
R.J.-M.
, “
Solvated Calcium Ions in Charged Silica Nanopores
,”
J. Chem. Phys.
, Vol.
137
,
2012
,064706. https://doi.org/10.1063/1.4742854
46.
Viallis-Terrisse
,
H.
,
Nonat
,
A.
, and
Petit
,
J.-C.
, “
Zeta-Potential Study of Calcium Silicate Hydrates Interacting With Alkaline Cations
,”
J. Colloid. Interf. Sci.
, Vol.
244
, No.
1
,
2001
, pp.
58
65
. https://doi.org/10.1006/jcis.2001.7897
47.
Elakneswaran
,
Y.
,
Nawa
,
T.
, and
Kurumisawa
,
K.
, “
Influence of Surface Charge on Ingress of Chloride Ion in Hardened Pastes
,”
Mater. Struct.
, Vol.
42
, No.
1
,
2008
, pp.
83
93
. https://doi.org/10.1617/s11527-008-9368-8
48.
Woodruff
,
D.P.
,
The Solid–Liquid Interface
,
Cambridge University Press
,
London
,
1973
.
49.
Shi
,
C.
, “
Formation and Stability of 3CaO·CaCl2·12H2O
,”
Cem. Concr. Res.
, Vol.
31
, No.
9
,
2001
, pp.
1373
1375
. https://doi.org/10.1016/S0008-8846(01)00576-2
50.
Julio-Betancourt
,
G.
and
Hooton
,
R.
, “
Study of the Joule Effect on Rapid Chloride Permeability Values and Evaluation of Related Electrical Properties of Concretes
,”
Cem. Concr. Res.
, Vol.
34
, No.
6
,
2004
, pp.
1007
1115
. https://doi.org/10.1016/j.cemconres.2003.11.012
51.
Diamond
,
S.
, “
Delayed Ettringite Formation––Processes and Problems
,”
Cem. Concr. Compos.
, Vol.
18
, No.
3
,
1996
, pp.
205
215
. https://doi.org/10.1016/0958-9465(96)00017-0
52.
Nair
,
S.
and
Little
,
D.
, “
Water as the Key to Expansion of Ettringite in Cementitious Materials
,”
Transp. Res. Rec. J.
, Vol.
2104
,
2009
, pp.
55
62
. https://doi.org/10.3141/2104-06
53.
Abdi
,
M.R.
and
Wild
,
S.
, “
Sulphate Expansion of Lime-Stabilized Kaolinite; 1, Physical Characteristics
,”
Clay Miner.
, Vol.
28
,
1993
, pp.
555
567
. https://doi.org/10.1180/claymin.1993.028.4.06
54.
Taylor
,
H.F.
, “
Sulfate Reactions in Concrete––Microstructural and Chemical Aspects
,”
Cem. Technol.
, Vol.
40
,
1989
, pp.
61
78
.
55.
Bonen
,
D.
, “
Composition and Appearance of Magnesium Silicate Hydrate and Its Relation to Deterioration of Cement-Based Materials
,”
J. Am. Ceram. Soc.
, Vol.
75
,
1992
, pp.
2904
2906
. https://doi.org/10.1111/j.1151-2916.1992.tb05530.x
56.
Mohan
,
K.
and
Taylor
,
H.F. W.
, “
Analytical Electron Microscopy of Cement Pastes: IV, Beta-Dicalcium Silicate Pastes
,”
J. Am. Ceram. Soc.
, Vol.
64
,
1981
, pp.
717
719
. https://doi.org/10.1111/j.1151-2916.1981.tb15893.x
This content is only available via PDF.
You do not currently have access to this content.