Abstract

Graphite nanomaterials offer distinct features for effective reinforcement of cementitious matrices in the pre-crack and post-crack ranges of behavior. In the work reported herein, carbon nanofiber was chosen for use in high-performance concrete. Synergistic actions of carbon nanofibers and polyvinyl alcohol (PVA) fibers in high-performance concrete were also investigated. Carbon nanofiber surfaces were modified by introduction of hydrophilic groups in order to improve their dispersion and interfacial interactions in cementitious matrices. An experimental program was conducted in order to assess the contributions of modified carbon nanofiber to diverse engineering properties of high-performance concrete. A statistical optimization program was implemented in order to identify optimum dosage of nano- and micro-scale reinforcement systems in high-performance concrete. The experimental results verified that optimum reinforcement systems comprised both carbon nanofiber and (micro-scale) PVA fiber. The gains in concrete engineering properties realized with optimum (nano- and micro-scale) reinforcement could not be matched by those provided by nano- or micro-scale reinforcement used alone. This finding supports the hypothesis that nano- and micro-scale reinforcement play complementary/synergistic roles in concrete by providing reinforcing effects at different scales and are also due to the benefits rendered by nanomaterials towards interfacial stress transfer and pullout behavior of fibers.

References

1.
Bencardino
,
F.
,
Rizzuti
,
L.
,
Spadea
,
G.
, and
Swamy
,
R.N.
, “
Experimental Evaluation of Fiber Reinforced Concrete Fracture Properties
,”
Compos. B
, Vol.
41
, No.
1
,
2010
, pp.
17
24
. https://doi.org/10.1016/j.compositesb.2009.09.002
2.
Zhou
,
H.
,
Huang
,
P.
,
Zheng
,
S.
, and
Hu
,
R.
, “
Size Effect of Fracture Toughness of High Strength Fiber Concrete
,”
Adv. Sci. Lett.
, Vol.
4
, No.
3
,
2011
, pp.
977
980
. https://doi.org/10.1166/asl.2011.1762
3.
Peyvandi
,
A.
,
Soroushian
,
P.
, and
Jahangirnejad
,
S.
, “
Structural Design Methodologies for Concrete Pipes With Steel and Synthetic Fiber Reinforcement
,”
ACI Struct. J.
, Vol.
111
,
2014
, pp.
83
92
.
4.
Farzadnia
,
N.
,
Abang Ali
,
A.A.
, and
Demirboga
,
R.
, “
Development of Nanotechnology in High Performance Concrete
,”
Adv. Mater. Res.
, Vol.
364
,
2012
, pp.
115
118
.
5.
Raki
,
L.
,
Beaudoin
,
J.
,
Alizadeh
,
R.
,
Makar
,
J.
, and
Sato
,
T.
, “
Cement and Concrete Nanoscience and Nanotechnology
,”
Materials
, Vol.
3
,
2010
, pp.
918
942
.
6.
Sanchez
,
F.
and
Sobolev
,
K.
, “
Nanotechnology in Concrete—A Review
,”
Constr. Build. Mater.
, Vol.
24
,
2010
, pp.
2060
2071
. https://doi.org/10.1016/j.conbuildmat.2010.03.014
7.
Peyvandi
,
A.
,
Soroushian
,
P.
, and
Jahangirnejad
,
S.
, “
Enhancement of the Structural Efficiency and Performance of Concrete Pipes Through Fiber Reinforcement
,”
Constr. Build. Mater.
, Vol.
45
,
2013
, pp.
36
44
.
8.
Konsta-Gdoutos
,
M.S.
,
Metaxa
,
Z.S.
, and
Shah
,
S.P.
, “
Multi-Scale Mechanical and Fracture Characteristics and Early-Age Strain Capacity of High Performance Carbon Nanotube/Cement Nanocomposites
,”
Cem. Concr. Compos.
, Vol.
32
,
2010
, pp.
110
115
. https://doi.org/10.1016/j.cemconcomp.2009.10.007
9.
Konsta-Gdoutos
,
M.S.
,
Metaxa
,
Z.S.
, and
Shah
,
S.P.
, “
Highly Dispersed Carbon Nanotube Reinforced Cement Based Materials
,”
Cem. Concr. Res.
, Vol.
40
,
2010
, pp.
1052
1059
. https://doi.org/10.1016/j.cemconres.2010.02.015
10.
Li
,
G.Y.
,
Wang
,
P.M.
, and
Zhao
,
X.
, “
Pressure-Sensitive Properties and Microstructure of Carbon Nanotube Reinforced Cement Composites
,”
Cem. Concr. Compos.
, Vol.
29
, No.
5
,
2007
, pp.
377
382
. https://doi.org/10.1016/j.cemconcomp.2006.12.011
11.
Metaxa
,
Z.S.
,
Konsta-Gdoutos
,
M.S.
, and
Shah
,
S.P.
, “
Carbon Nanotubes Reinforced Concrete
,”
ACI J.
, Vol.
267
,
2009
, pp.
11
20
.
12.
Musso
,
S.
,
Tulliani
,
J.M.
,
Ferro
,
G.
, and
Tagliaferro
,
A.
, “
Influence of Carbon Nanotubes Structure on the Mechanical Behavior of Cement Composites
,”
Compos. Sci. Technol.
, Vol.
69
, Nos.
11–12
,
2009
, pp.
1985
1990
. https://doi.org/10.1016/j.compscitech.2009.05.002
13.
Makar
,
J.M.
and
Beaudoin
,
J.J.
, “
Carbon Nanotubes and Their Applications in the Construction Industry
,”
Nanotechnology in Construction, Proceedings of the 1st International Symposium on Nanotechnology in Construction
,
Bartos
P.J. M.
,
Hughes
J.J.
,
Trtik
P.
and
Zhu
W.
, Eds.,
Royal Society of Chemistry
,
London
,
2004
, pp.
331
341
.
14.
Makar
,
J.M.
and
Chan
,
G.W.
, “
Growth of Cement Hydration Products on Single-Walled Carbon Nanotubes
,”
J. Am. Ceram. Soc.
, Vol.
92
, No.
6
,
2009
, pp.
1303
1310
. https://doi.org/10.1111/j.1551-2916.2009.03055.x
15.
Li
,
G.Y.
,
Wang
,
P.M.
, and
Zhao
,
X.
, “
Mechanical Behavior and Microstructure of Cement Composites Incorporating Surface-Treated Multi-Walled Carbon Nanotubes
,”
Carbon
, Vol.
43
, No.
6
,
2005
, pp.
1239
1245
. https://doi.org/10.1016/j.carbon.2004.12.017
16.
Cwirzen
,
A.
,
Habermehl-Cwirzen
,
K.
,
Nasibulin
,
A.G.
,
Kaupinen
,
E.I.
,
Mudimela
,
P.R.
, and
Penttala
,
V.
, “
SEM/AFM Studies of Cementitious Binder Modified by MWCNT and Nano-Sized Fe Needles
,”
Mater. Character.
, Vol.
60
, No.
7
,
2009
, pp.
735
740
. https://doi.org/10.1016/j.matchar.2008.11.001
17.
Cwirzen
,
A.
,
Habermehl-Cwirzen
,
K.
, and
Penttala
,
V.
, “
Surface Decoration of Carbon Nanotubes and Mechanical Properties of Cement/Carbon Nanotube Composites
,”
Adv. Cem. Res.
, Vol.
20
, No.
2
,
2008
, pp.
65
73
. https://doi.org/10.1680/adcr.2008.20.2.65
18.
Metaxa
,
Z.S.
,
Konsta-Gdoutos
,
M.S.
, and
Shah
,
S.P.
, “
Carbon Nanotubes Reinforced Concrete
,” ACI Fall 2009 Convention,
American Concrete Institute
,
Farmington Hills, MI
,
2009
, pp.
11
20
.
19.
Metaxa
,
Z.S.
,
Konsta-Gdoutos
,
M.S.
, and
Shah
,
S.P.
, “
Mechanical Properties and Nanostructure of Cement-Based Materials Reinforced With Carbon Nanofibers and Polyvinyl Alcohol (PVA) Microfibers
,”
ACI Spring 2010 Convention
,
ACI
,
Farmington Hills, MI
,
2010
, pp.
115
126
.
20.
Collins
,
F.
,
Lambert
,
J.
, and
Duan
,
W.H.
, “
The Influences of Admixtures on the Dispersion, Workability, and Strength of Carbon Nanotube–OPC Paste Mixtures
,”
Cem. Concr. Compos.
, Vol.
34
, No.
2
,
2012
, pp.
201
207
. https://doi.org/10.1016/j.cemconcomp.2011.09.013
21.
Liu
,
Y.X.
,
Du
,
Z.J.
,
Li
,
Y.
,
Zhang
,
C.
, and
Li
,
H.Q.
, “
Covalent Functionalization of Multiwalled Carbon Nanotubes With Poly (Acrylic Acid)
,”
Chin. J. Chem.
, Vol.
24
, No.
4
,
2006
, pp.
563
568
. https://doi.org/10.1002/cjoc.200690107
22.
Metaxa
,
Z.S.
,
Seo
,
J.W. T.
,
Konsta-Gdoutos
,
M.S.
,
Hersam
,
M.C.
, and
Shah
,
S.P.
, “
Highly Concentrated Carbon Nanotube Admixture for Nano-Fiber Reinforced Cementitious Materials
,”
Cem. Concr. Compos.
, Vol.
34
, No.
5
,
2012
, pp.
612
617
. https://doi.org/10.1016/j.cemconcomp.2012.01.006
23.
Yazdanbakhsh
,
A.
and
Grasley
,
Z.
, “
The Theoretical Maximum Achievable Dispersion of Nanoinclusions in Cement Paste
,”
Cem. Concr. Res.
, Vol.
42
, No.
6
,
2012
, pp.
798
804
. https://doi.org/10.1016/j.cemconres.2012.03.001
24.
Tibbettsa
,
G.G.
,
Lakea
,
M.L.
,
Strongb
,
K.L.
, and
Ricec
,
B.P.
, “
A Review of the Fabrication and Properties of Vapor-Grown Carbon Nanofiber/Polymer Composites
,”
Compos. Sci. Technol.
, Vol.
67
, Nos.
7–8
,
2007
, pp.
1709
1718
. https://doi.org/10.1016/j.compscitech.2006.06.015
25.
Xie
,
X.L.
,
Mai
,
Y.W.
, and
Zhou
,
X.P.
, “
Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review
,”
Mater. Sci. Eng.
, Vol.
49
, No.
4
,
2005
, pp.
89
112
. https://doi.org/10.1016/j.mser.2005.04.002
26.
Galao
,
O.
,
Zornoza
,
E.
,
Baeza
,
F.J.
,
Bernabeu
,
A.
, and
Garcés
,
P.
, “
Effect of Carbon Nanofiber Addition in the Mechanical Properties and Durability of Cementitious Materials
,”
Mater. Constr.
, Vol.
62
, No.
307
,
2012
, pp.
343
357
. https://doi.org/10.3989/mc.2012.01211
27.
Metaxa
,
Z.S.
,
Konsta-Gdoutos
,
M.S.
, and
Shah
,
S.P.
, “
Carbon Nanofiber Cementitious Composites: Effect of Debulking Procedure on Dispersion and Reinforcing Efficiency
,” Cem. Concr. Compos.,
2012
(in press).
28.
Tyson
,
B.M.
,
Abu Al-Rub
,
R.K.
,
Yazdanbakhsh
,
A.
, and
Grasley
,
Z.
, “
Carbon Nanotubes and Carbon Nanofibers for Enhancing the Mechanical Properties of Nanocomposite Cementitious Materials
,”
ASCE J. Mater. Civ. Eng.
, Vol.
23
, No.
7
,
2011
, pp.
1
8
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000266
29.
Hunashya
,
A.M.
,
Tippa
,
S.V.
,
Quadri
,
S.S.
, and
Banapurmath
,
N.R.
, “
Experimental Investigation on Effect of Carbon Nanotubes and Carbon Fibres on the Behavior of Plain Cement Mortar Composite Round Bars Under Direct Tension
,”
Int. Schol. Res. Netw.
, Vol.
2011
,
2011
, pp.
1
6
.
30.
Hui-Sheng
,
S.H.
,
Bi-Wan
,
X.
, and
Xiao-Chen
,
Z.
, “
Influence of Mineral Admixtures on Compressive Strength, Gas Permeability and Carbonation of High Performance Concrete
,”
Constr. Build. Mater.
, Vol.
23
, No.
5
,
2009
, pp.
1980
1985
. https://doi.org/10.1016/j.conbuildmat.2008.08.021
31.
Schmidt
,
M.
,
Amrhein
,
K.
,
Braun
,
T.
,
Glotzbach
,
C.
,
Kamaruddin
,
S.
, and
Tänzer
,
R.
, “
Nanotechnological Improvement of Structural Materials—Impact on Material Performance and Structural Design
,”
Cem. Concr. Compos.
, Vol.
36
,
2013
, pp.
3
7
.
32.
Wang
,
C.
,
Yang
,
C.
,
Liu
,
F.
,
Wan
,
C.
, and
Pu
,
X.
, “
Preparation of Ultra–High Performance Concrete With Common Technology and Materials
,”
Cem. Concr. Res.
, Vol.
34
, No.
4
,
2012
, pp.
538
544
. https://doi.org/10.1016/j.cemconcomp.2011.11.005
33.
Zhutovsky
,
S.
and
Kovler
,
K.
, “
Effect of Internal Curing on Durability-Related Properties of High Performance Concrete
,”
Cem. Concr. Res.
, Vol.
42
, No.
1
,
2012
, pp.
20
26
. https://doi.org/10.1016/j.cemconres.2011.07.012
34.
Piqué
,
T.M.
,
Balzamo
,
H.
, and
Vázquez
,
A.
, “
Evaluation of the Hydration of Portland Cement Modified With Polyvinyl Alcohol and Nano Clay
,”
Key Eng. Mater.
, Vol.
466
,
2011
, pp.
47
56
. https://doi.org/10.4028/www.scientific.net/KEM.466.47
35.
Shah
,
S.P.
,
Konsta-Gdoutos
,
M.
,
Metaxa
,
Z.
, and
Mondal
,
P.
,
Nanoscale Modification of Cementitious Materials. Nanotechnology in Construction 3
,
Springer
,
New York
,
2009
, pp.
125
130
.
36.
Li
,
H.
,
Zhang
,
M.-H.
, and
Ou
,
J.-P.
, “
Abrasion Resistance of Concrete Containing Nano-Particles for Pavement
,”
Wear
, Vol.
260
, No.
11
,
2006
, pp.
1262
1266
. https://doi.org/10.1016/j.wear.2005.08.006
37.
Zheng
,
Z.
and
Feldman
,
D.
, “
Synthetic Fibre-Reinforced Concrete
,”
Prog. Polym. Sci.
, Vol.
20
, No.
2
,
1995
, pp.
185
210
. https://doi.org/10.1016/0079-6700(94)00030-6
38.
Peyvandi
,
A.
,
Soroushian
,
P.
, and
Jahangirnejad
,
S.
, “
Enhancement of the Structural Efficiency and Performance of Concrete Pipes Through Fiber Reinforcement
,”
Constr. Build. Mater.
, Vol.
45
,
2013
, pp.
36
44
. https://doi.org/10.1016/j.conbuildmat.2013.03.084
39.
Peyvandi
,
A.
,
Soroushian
,
P.
,
Balachandra
,
A.M.
, and
Sobolev
,
K.
, “
Enhancement of the Durability Characteristics of Concrete Nanocomposite Pipes With Modified Graphite Nanoplatelets
,”
Constr. Build. Mater.
, Vol.
47
,
2013
, pp.
111
117
. https://doi.org/10.1016/j.conbuildmat.2013.05.002
40.
Peyvandi
,
A.
and
Soroushian
,
P.
, “
Structural Performance of Dry-Cast Concrete Nanocomposite Pipes
,”
Mater. Struct.
,
2013
, pp.
1
10
.
41.
ASTM C192/C192M-14:
Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2014
.
42.
ASTM C305-14:
Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2014
.
43.
ASTM C78/C78M-10e1:
Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2010
.
44.
ASTM C39/C39M-14a:
Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2014
.
45.
ASTM D7316/D7316M-12:
Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2012
.
46.
ASTM C944/C944M-12:
Standard Test Method for Abrasion Resistance of Concrete or Mortar Surfaces by the Rotating-Cutter Method
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2012
.
47.
ASTM C1585-13:
Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2013
.
This content is only available via PDF.
You do not currently have access to this content.