Abstract

The utilization of stainless steels for corrosion mitigation in prestressed concrete is a topic that has received little attention in the literature. Previous work conducted on high-strength stainless steels has shown that austenitic SAE 316 provides adequate resistance to pitting corrosion and environmentally assisted cracking (EAC). Austenitic SAE 304 was found to be susceptible to pitting corrosion and EAC. Duplex type 2205 has shown exceptional mechanical properties with high resistance to pitting corrosion and EAC. Recent research on these and other alloys including transitioning to the field portends their potential application as corrosion-resistant prestressing reinforcements in concrete structures.

References

1.
Koch
,
G.H.
,
Brongers
,
M.P. H.
,
Thompson
,
N.G.
,
Virmani
,
Y.P.
, and
Payer
,
J.H.
,
Corrosion Costs and Preventive Strategies in the United States
,
NACE
,
Houston, TX
,
2008
, p. 12.
2.
NACE
,
How Much Can a Bridge Take?
NACE
,
Houston, TX
,
2008
.
3.
Hansson
,
C.M.
,
Effects of High Performance Concrete on Corrosion of Reinforcement
,
P.C. Association
,
Skokie, IL
,
2005
.
4.
Hope
,
B.B.
and
Nmai
,
C.K.
,
Protection of Metals in Concrete against Corrosion
,
American Concrete Institute Committee 222
,
Farmington Hills, MI
,
2001
, p. 41.
5.
Darwin
,
D.
,
Browning
,
J.
,C.E.L., Jr.
, and
Nguyen
,
T.V.
,
Multiple Corrosion Protection Systems for Reinforced Concrete Bridge Components
,
University of Kansas
,
Lawrence, KS
,
2007
, p.95.
6.
Sagüés
,
A.A.
,
Lee
,
J.B.
,
Chang
,
X.
,
Pickering
,
H.
,
Nystrom
,
E.
,
Carpenter
,
W.
,
Kranc
,
S.C.
,
Simmons
,
T.
,
Boucher
,
B.
, and
Hierholzer
,
S.
,
Corrosion of Epoxy Coated Rebar in Florida Bridges
,
University of South Florida
,
Tampa, FL
,
1994
, p.135.
7.
Zemajtis
,
J.
,
Weyers
,
R.E.
, and
Sprinkel
,
M.M.
,
Performance Evaluation of Corrosion Inhibitors and Galvanized Steel in Concrete Exposure Specimens
,
Virginia Transportation Research Council
,
Charlottesville, VA
,
1999
, p. 74.
8.
Sharp
,
S.R.
and
Virmani
,
Y.P.
,
Factors That Influence the Efficiency of Electrochemical Chloride Extraction during Corrosion Mitigation in Reinforced Concrete Structures
,
Virginia Transportation Research Council
,
Charlottesville, VA
,
2006
, p. 30.
9.
Cramer
,
S.D.
, B.S.C., Jr.
,
Bullard
,
S.J.
,
Holcomb
,
G.R.
,
Russell
,
J.H.
,
Nelson
,
F.J.
,
Laylor
,
H.M.
, and
Soltesz
,
S.M.
, “
Corrosion Prevention and Remediation Strategies for Reinforced Concrete Coastal Bridges
,”
Cem. Concr. Compos.
, Vol.
24
,
2002
, pp.
101
117
. https://doi.org/10.1016/S0958-9465(01)00031-2
10.
Bertolini
,
L.
,
Bolzoni
,
F.
,
Cigada
,
A.
,
Pastore
,
T.
, and
Pedeferri
,
P.
, “
Cathodic Protection of New and Old Reinforced Concrete Structures
,”
Corros. Sci.
, Vol.
35
, Nos.
5–8
,
1993
, pp.
1633
1639
. https://doi.org/10.1016/0010-938X(93)90393-U
11.
Broomfield
,
J.P.
,
Corrosion of Steel in Concrete
,
Taylor and Francis Group
,
Abingdon, UK
,
2007
.
12.
Bautista
,
A.
,
Blanco
,
G.
, and
Velasco
,
F.
, “
Corrosion Behaviors of Low-nickel Austenitic Stainless Steel Reinforcements: A Comparative Study in Simulated Pore Solutions
,”
Cem. Concr. Res.
, Vol.
36
,
2006
, pp.
1922
1930
. https://doi.org/10.1016/j.cemconres.2005.10.009
13.
Garcia-Alonso
,
M.C.
,
Escudero
,
M.L.
,
Miranda
,
J.M.
,
Vega
,
M.I.
,
Capilla
,
F.
,
Correia
,
M.J.
,
Salta
,
M.
,
Bennani
,
A.
, and
Gonzalez
,
J.A.
, “
Corrosion Behaviour of New Stainless Steels Reinforcing Bars Embedded in Concrete
,”
Cem. Concr. Res.
, Vol.
37
, No.
10
,
2007
, pp.
1463
1471
. https://doi.org/10.1016/j.cemconres.2007.06.003
14.
Hartt
,
W.H.
,
Powers
,
R.G.
,
Leroux
,
V.
, and
Lysogorski
,
D.K.
,
Critical Literature Review of High-performance Corrosion Reinforcements in Concrete Bridge Applications
,
Florida Atlantic University
,
Boca Raton, FL
,
2004
, p. 53.
15.
Nürnberger
,
U.
and
Wu
,
Y.
, “
Stainless Steel in Concrete Structures and in the Fastening Technique
,”
Mater. Corros. Werkstoffe Korrosion
, Vol.
59
, No.
2
,
2008
, pp.
144
158
. https://doi.org/10.1002/maco.200804150
16.
Nawy
,
E.G.
,
Prestressed Concrete—A Fundamental Approach
,
Prentice-Hall
,
Upper Saddle River, NJ
,
2000
.
17.
Atienza
,
J.M.
and
Elices
,
M.
, “
Role of Residual Stresses in Stress Relaxation of Prestressed Concrete Wires
,”
J. Mater. Civ. Eng.
, Vol.
19
, No.
8
,
2007
, pp.
703
708
. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:8(703)
18.
Hope
,
B.B.
and
Nmai
,
C.K.
,
Corrosion of Prestressing Steels
,
American Concrete Institute Committee 222
,
Farmington Hills, MI
,
2001
, p. 43.
19.
ASTM A416/A416M-06
:
Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2006
.
20.
Nürnberger
,
U.
, “
Corrosion Induced Failure Mechanisms of Prestressing Steel
,”
Mater. Corros.
, Vol.
53
, No.
8
,
2002
, pp.
591
601
. https://doi.org/10.1002/1521-4176(200208)53:8<591::AID-MACO591>3.0.CO;2-X
21.
Ahern
,
M.E.
,
Design and Fabrication of a Compact Specimen for Evaluation of Corrosion Resistance of New Post-tensioning Systems
,
University of Texas at Austin
,
Austin, TX
,
2005
.
22.
Brooks
,
M.A.
,
Influence of Interstitial Crevice Corrosion in Accelerated Corrosion Testing
,
Penn State University
,
State College, PA
,
2003
.
23.
Proverbio
,
E.
and
Bonaccorsi
,
L.M.
, “
Failure of Prestressing Steel Induced by Crevice Corrosion in Prestressed Concrete Structures
,”
9th International Conference on Durability of Materials and Components
,
Commonwealth Scientific and Industrial Research Organisation
, March
2002
,
Brisbane, Australia
,
2002
.
24.
Moser
,
R.D.
,
Singh
,
P.M.
,
Kahn
,
L.F.
, and
Kurtis
,
K.E.
, “
Chloride-induced Corrosion of Prestressing Steels Considering Crevice Effects and Surface Imperfections
,”
Corrosion
, Vol.
67
, No.
6
,
2010
, p.
065001
1
.
25.
Nürnberger
,
U.
, “
Hydrogen Induced Cracking of Prestressing Steel in Concrete Constructions
,”
Proceedings of EUROCORR
, Nice, France,
European Corrosion Congress
, September 6–10,
Nice, France
,
2009
.
26.
Schroeder
,
R.M.
and
Müller
,
I.L.
, “
Stress Corrosion Cracking and Hydrogen Embrittlement Susceptibility of an Euctectoid Steel Employed in Prestressed Concrete
,”
Corros. Sci.
, Vol.
45
, No.
9
,
2003
, pp.
1969
1983
. https://doi.org/10.1016/S0010-938X(03)00035-0
27.
Mietz
,
J.
, “
Investigations on Hydrogen-induced Embrittlement of Quench and Tempered Prestressing Steels
,”
Mater. Corros.
, Vol.
51
, No.
2
,
2000
, pp.
80
90
. https://doi.org/10.1002/(SICI)1521-4176(200002)51:2<80::AID-MACO80>3.0.CO;2-A
28.
Mehta
,
P.K.
and
Monteiro
,
P.J. M.
,
Concrete: Microstructure, Properties, and Materials
,
McGraw-Hill
,
New York
,
2006
.
29.
Poursaee
,
A.
and
Hansson
,
C.M.
, “
Reinforcing Steel Passivation in Mortar and Pore Solution
,”
Cem. Concr. Res.
, Vol.
37
, No.
7
,
2007
, pp.
1127
1133
. https://doi.org/10.1016/j.cemconres.2007.04.005
30.
Rossi
,
A.
,
Tulifero
,
R.
, and
Elsener
,
B.
, “
Surface Analytical and Electrochemical Study on the Role of Adsorbed Chloride Ions in Corrosion of Stainless Steels
,”
Mater. Corros.
, Vol.
52
, No.
3
,
2001
, pp.
175
180
. https://doi.org/10.1002/1521-4176(200103)52:3<175::AID-MACO175>3.0.CO;2-S
31.
Addari
,
D.
,
Elsener
,
B.
, and
Rossi
,
A.
, “
Electrochemistry and Surface Chemistry of Stainless Steels in Alkaline Media Simulating Concrete Pore Solutions
,”
Electrochim. Acta
, Vol.
53
, No.
27
,
2008
, pp.
8078
8086
. https://doi.org/10.1016/j.electacta.2008.06.007
32.
Schmuki
,
P.
, “
From Bacon to Barriers: A Review on the Passivity of Metals and Alloys
,”
J. Solid State Electrochem.
, Vol.
6
, No.
3
,
2002
, pp.
145
164
. https://doi.org/10.1007/s100080100219
33.
Hansson
,
C.M.
,
Poursaee
,
A.
, and
Laurent
,
A.
, “
Macrocell and Microcell Corrosion of Steel in Ordinary Portland Cement and High Performance Concretes
,”
Cem. Concr. Res.
, Vol.
36
,
2006
, pp.
2098
2102
.
34.
Andrade
,
C.
,
Keddam
,
M.
,
Nóvoa
,
X.R.
,
Pérez
,
M.C.
,
Rangel
,
C.M.
, and
Takenouti
,
H.
, “
Electrochemical Behaviour of Steel Rebars in Concrete: Influence of Environmental Factors and Cement Chemistry
,”
Electrochim. Acta
, Vol.
46
,
2001
, pp.
3905
3912
. https://doi.org/10.1016/S0013-4686(01)00678-8
35.
Nilsson
,
L.-O.
, “
Models for Chloride Ingress into Concrete—From Collepardi to Today
,”
Int. J. Model. Indent. Cont.
, Vol.
7
, No.
2
,
2009
, pp.
129
134
. https://doi.org/10.1504/IJMIC.2009.027065
36.
Rossi
,
A.
,
Tulifero
,
R.
, and
Elsener
,
B.
, “
Surface Analytical and Electrochemical Study on the Role of Adsorbed Chloride Ions in Corrosion of Stainless Steels
,”
Mater. Corros. Werkstoffe Korrosion
, Vol.
52
, No.
3
,
2001
, pp.
175
180
. https://doi.org/10.1002/1521-4176(200103)52:3<175::AID-MACO175>3.0.CO;2-S
37.
Kurtis
,
K.E.
and
Mehta
,
K.
, “
A Critical Review of Deterioration of Concrete Due to Corrosion of Reinforcing Steel
,”
American Concrete Institute Special Publication 170, Durability of Concrete
,
ACI
,
Farmington Hills, MI
,
1997
.
38.
Jones
,
D.A.
,
Principles and Prevention of Corrosion
,
Prentice-Hall
,
Upper Saddle River, NJ
,
1996
.
39.
Mietz
,
J.
, “
Investigations on Hydrogen-induced Embrittlement of Quench and Tempered Prestressing Steels
,”
Mater. Corros.
, Vol.
51
,
2000
, pp.
80
90
. https://doi.org/10.1002/(SICI)1521-4176(200002)51:2<80::AID-MACO80>3.0.CO;2-A
40.
Nürnberger
,
U.
, “
Corrosion Induced Failure Mechanisms of Prestressing Steel
,”
Mater. Corros.
, Vol.
53
, No.
8
,
2002
, pp.
591
601
. https://doi.org/10.1002/1521-4176(200208)53:8<591::AID-MACO591>3.0.CO;2-X
41.
Mietz
,
J.
and
Isecke
,
B.
, “
Assessment of Test Methods for Evaluation Stress Corrosion Cracking Susceptibility of Prestressing Steels
,”
Mater. Corros. Werkstoffe Korrosion
, Vol.
53
, No.
6
,
2002
, pp.
373
384
. https://doi.org/10.1002/1521-4176(200206)53:6<373::AID-MACO373>3.0.CO;2-C
42.
Landolt
,
D.
,
Corrosion and Surface Chemistry of Metals
,
EPFL Press
,
Laussanne, Switzerland
,
2007
.
43.
Skorchelletti
,
V.V.
,
Theory of Metal Corrosion
,
Israel Program for Scientific Translations
,
Jerusalem, Israel
,
1976
.
44.
Griggs
,
R.D.
,
Structural Concrete in the Georgia Coastal Environment
,
Georgia Department of Transportation
,
Atlanta, GA
,
1987
.
45.
Hamilton
,
H.R.
, III
,
St. George Island Bridge Pile Testing
,
Florida Department of Transportation
,
Gainesville, FL
,
2007
.
46.
Thaesler
,
P.
,
Kahn
,
L.
,
Oberle
,
R.
, and
Demers
,
C.E.
, “
Durable Repairs on Marine Bridge Piles
,”
J. Perform Constr. Facil.
, Vol.
19
, No.
1
,
2005
, pp.
88
92
. https://doi.org/10.1061/(ASCE)0887-3828(2005)19:1(88)
47.
Lewis
,
A.F. G.
,
Steel for Prestressing
,
Lowe & Brydone Limited
,
London, UK
,
1969
.
48.
Schupack
,
M.
and
Suarez
,
M.G.
, “
Some Recent Corrosion Embrittlement Failures of Prestressing Systems in the United States
,”
J. PCI
, March-April,
1982
, pp.
38
55
. https://doi.org/10.15554/pcij.03011982.38.55
49.
Hartt
,
W.H.
,
Kumria
,
C.C.
, and
Kessler
,
R.J.
, “
Influence of Potential, Chlorides, pH, and Precharging Time on Embrittlement of Cathodically Polarized Prestressing Steel
,”
Corrosion
, Vol.
49
, No.
5
,
1993
, pp.
377
385
. https://doi.org/10.5006/1.3316064
50.
Virmani
,
Y.P.
and
Clemena
,
G.G.
,
Corrosion Protection: Concrete Bridges
,
Turner-Fairbank Highway Research Center
,
McLean, VA
,
1998
.
51.
Raharinaivo
,
A.
, “
Galvanised Carbon Steel Tendons. Non-Destructive Testing Assessment and New Systems in Prestressed Concrete Structures
,”
European Cooperation in Science and Technology (COST)
, September,
Kielce, Poland
,
2005
.
52.
Salas
,
R.M.
,
Schokker
,
A.J.
,
West
,
J.S.
,
Breen
,
J.E.
, and
Kreger
,
M.E.
, “
Corrosion Risk of Bonded, Post-tensioned Concrete
,”
J. PCI
, Vol.
53
, No.
1
,
2008
, pp.
89
107
.
53.
Salas
,
R.M.
,
Schokker
,
A.J.
,
West
,
J.S.
,
Breen
,
J.E.
, and
Kreger
,
M.E.
,
Conclusions, Recommendations and Design Guidelines for Corrosion Protection of Post-tensioned Bridges
,
Center for Transportation Research
,
Austin, TX
,
2004
, p. 85.
54.
DeLong
,
W.T.
,
Ostrom
,
G.A.
, and
Szumachowski
,
E.R.
, “
Measurement and Calculation of Ferrite in Stainless Steel Weld Metal
,”
J. Weld
, Vol.
35
, No.
11
,
1956
, pp.
521
528
.
55.
Hartt
,
W.H.
,
Jobsite Evaluation of Corrosion Resistant Alloys for Use as Reinforcement in Concrete
,
Florida Atlantic University
,
Boca Raton, FL
,
2005
, p. 82.
56.
Clemena
,
G.G.
,
Investigation of the Resistance of Several New Metallic Reinforcing Bars to Chloride-induced Corrosion in Concrete
,
Virginia Transportation Research Council
,
Charlottesville, VA
,
2003
.
57.
Hurley
,
M.F.
and
Scully
,
J.R.
, “
Threshold Chloride Concentrations of Selected Corrosion-resistant Rebar Materials Compared to Carbon Steel
,”
Corrosion
, Vol.
62
, No.
10
,
2006
, pp.
892
904
. https://doi.org/10.5006/1.3279899
58.
Dupoiron
,
F.
and
Audouard
,
J.P.
, “
Duplex Stainless Steels: A High Mechanical Properties Stainless Steel Family
,”
Scand. J. Metal
, Vol.
25
,
1996
, pp.
95
102
.
59.
Presuel-Moreno
,
F.
,
Scully
,
J.R.
, and
Sharp
,
S.R.
, “
Literature Review of Commercially Available Alloys That Have Potential as Low-cost Corrosion-resistant Concrete Reinforcement
,”
Corrosion
, Vol.
68
, No.
8
,
2010
, pp.
1
13
.
60.
Markeset
,
G.
,
Rostam
,
S.
, and
Klinghoffer
,
O.
,
Guide for the Use of Stainless Steel Reinforcement in Concrete Structures
,
Norwegian Building Research Institute
,
Trondheim, Norway
,
2006
.
61.
Cramer
,
S.D.
, B.S.C., Jr.
,
Bullard
,
S.J.
,
Holcomb
,
G.R.
,
Russell
,
J.H.
,
Nelson
,
F.J.
,
Laylor
,
H.M.
, and
Soltesz
,
S.M.
, “
Corrosion Prevention and Remediation Strategies for Reinforced Concrete Coastal Bridges
,”
Cem. Concr. Compos.
, Vol.
24
,
2002
, pp.
101
117
. https://doi.org/10.1016/S0958-9465(01)00031-2
62.
Knudson
,
A.
and
Skovsgaard
,
T.
,
The Optimal Use of Stainless Steel Reinforcement in Concrete Structures
,
Ramboll Arminox
,
Viborg, Denmark
,
1999
, p.8.
63.
Schupack
,
M.
, “
Prestressing Reinforcement in the New Millennium
,”
Concr. Int.
, Vol.
23
, No.
12
,
2001
, pp.
38
45
.
64.
Alonso
,
M.C.
, “
Corrosion Performance of High Strength Stainless Steel for Tendon Applications
,”
Final Conference of COST Action 534
,
European Cooperation in Science and Technology
, Nov 26–27,
Toulouse, France
,
2007
.
65.
Alonso
,
M.C.
and
Recio
,
F.J.
, “
Mechanical Resistance of Stainless Steel in Highly Alkaline Media with Chlorides
,”
Annals of Fracture Mechanics
, Vol.
2
,
2007
, pp.
649
954
.
66.
Alonso
,
M.C.
,
Recio
,
F.J.
, and
Sanchez
,
M.
, “
High Strength Stainless Steels for Prestressed Concrete Structures in Marine Environment
,”
1st International Conference on Construction Heritage in Coastal and Marine Environments: Damage, Diganosis, Maintenance and Rehabilitation
,
EU Atlantic Area Transnational Program
, Jan 28–30,
Lisbon, Portugal
,
2008
.
67.
Nürnberger
,
U.
, “
High Strength Stainless Steel—Alternative Materials for Tension Members in Civil Engineering
,”
Otto-Graf J.
, Vol.
14
,
2003
, pp.
45
66
.
68.
Nürnberger
,
U.
and
Wu
,
Y.
, “
High-strength Stainless Steel in Prestressed Concrete
,”
Workshop of COST on NTD Assessment and New Systems in Prestressed Concrete Structures
,
European Cooperation in Science and Technology (COST)
, Sept 19–21,
Kielce, Poland
,
2005
.
69.
Wu
,
Y.
and
Nürnberger
,
U.
, “
Corrosion-Technical Properties of High-strength Stainless Steels for the Application in Prestressed Concrete Structures
,”
Mater. Corros.
, Vol.
60
, No.
10
,
2009
, pp.
771
780
. https://doi.org/10.1002/maco.200905279
70.
Dash
,
J.
and
Otte
,
H.M.
, “
Martensite Transformation in Stainless Steel
,”
Acta Metall.
, Vol.
11
, No.
10
,
1963
, pp.
1169
1178
. https://doi.org/10.1016/0001-6160(63)90044-0
71.
Milad
,
M.
,
Zreiba
,
V.
,
Elhalouani
,
F.
, and
Baradai
,
C.
, “
The Effect of Cold Work on Structure and Properties of AISI 304 Stainless Steel
,”
J. Mater. Process. Technol.
, Vol.
203
, Nos.
1–3
,
2008
, pp.
80
85
. https://doi.org/10.1016/j.jmatprotec.2007.09.080
72.
Jenkins
,
J.F.
,
Validation of Nitronic 33 in Reinforced and Prestressed Concrete
,
Naval Facilites Engineering Command
,
Port Hueneme, CA
,
1987
.
73.
Insteel Industries
,
1/2” 240K Stainless Steel Strand
,
Insteel Industries
,
Sanderson, FL
,
2002
.
74.
Shirahama
,
S.
,
Fang
,
S.
,
Kobayashi
,
T.
, and
Miyagawa
,
T.
, “
Basic Properties of Duplex Stainless Prestressing Steel and Flexural Behaviors of Prestressed Concrete Beams Using the Tendon
,”
J. Soc. Mater. Sci. Jpn.
, Vol.
48
, No.
10
,
1999
, pp.
1199
1206
. https://doi.org/10.2472/jsms.48.1199
75.
Chai
,
G.
,
Soderman
,
A.
, and
Etheridge
,
P.
, “
High and Super-high-strength Duplex Stainless Steels for Wire Applications
,”
Stainless Steel World
,
2007
, pp.
19
23
.
76.
Izumida
,
H.
,
Kawabe
,
N.
,
Takamura
,
S.
,
Morita
,
H.
, and
Murai
,
T.
, “
Development of High-tensile-strength Stainless Steel Wire
,”
Sumitomo (SEI) Steel Wire Corp. Technical Review
, Vol.
60
,
2005
, pp.
24
29
.
77.
Moser
,
R.D.
,
High-strength Stainless Steels for Corrosion Mitigation in Prestressed Concrete: Development and Evaluation
,
Georgia Institute of Technology
,
Atlanta, GA
,
2011
.
78.
Moser
,
R.D.
,
Singh
,
P.M.
,
Kahn
,
L.F.
, and
Kurtis
,
K.E.
, “
Chloride-induced Corrosion Resistance of High-strength Stainless Steels in Simulated Alkaline and Carbonated Concrete Pore Solutions
,”
Corros. Sci.
, Vol.
57
,
2012
, pp.
241
253
. https://doi.org/10.1016/j.corsci.2011.12.012
79.
Recio
,
F.J.
,
Wu
,
Y.
,
Alonso
,
M.C.
, and
Nurnberger
,
U.
, “
Hydrogen Embrittlement Risk in Cold-drawn Stainless Steels
,”
Mater. Sci. Eng. A
, Vol.
564
,
2013
, pp.
57
64
.
80.
Schuetz
,
D.P.
,
Kahn
,
L.F.
,
Kurtis
,
K.E.
,
Singh
,
P.M.
, and
Moser
,
R.D.
,
Preliminary Studies of the Mechanical Behavior of High-strength Stainless Steel Prestressing Strands
,
Precast Prestressed Concrete Institute
,
Nashville, TN
,
2012
.
81.
Schaeffler
,
A.L.
, “
Constitution Diagram for Stainless Steel Weld Metal
,”
Met. Prog.
, Vol.
56
, No.
11
,
1949
, p. 680.
This content is only available via PDF.
You do not currently have access to this content.