Abstract

The mechanical behavior of unbound granular materials had proven to be extremely challenging. In the pavement field, as well as in other geotechnical disciplines, these materials are usually treated as time-independent. The objective of this work is to explore the applicability and potential for a viscoelastic-viscoplastic constitutive theory to characterize unbound granular materials. Such a theory contains as special cases the commonly applied elastic and elasto-plastic behavior types, it is capable of modeling time-dependence, and can be further compounded to simulate more sophisticated effects. Laboratory investigation is presented, in which a compacted granular specimen was exposed to a sequence of unidirectional creep and recovery cycles while under constant confinement conditions. Such a testing protocol offers an almost “automatic” separation of the behavior into resilient (viscoelastic) and permanent (viscoplastic) components. Described in detail are experimental issues related to specimen fabrication and instrumentation, and also test data processing for size reduction and resolution improvement. The measurements demonstrate that the material creeps under load and exhibits partial, time-dependent recovery while unloaded. A one-dimensional viscoelastic-viscoplastic constitutive theory is applied as a first attempt to reproduce the results. It is found that the model performs very well, simulating the observed data trends and magnitudes; it is therefore deemed potentially generalizable to more advanced conditions.

References

1.
Werkmeister
,
S.
,
Dawson
,
A.
, and
Wellner
,
F.
, “
Permanent Deformation Behavior of Granular Materials and the Shakedown Concept
,”
Transp. Res. Rec.
, Vol.
1757
,
2003
, pp.
75
81
. https://doi.org/10.3141/1757-09
2.
Gopalakrishnan
,
K.
and
Thompson
,
M.R.
, “
Rebound and Residual In Situ Pavement Displacements Measured during NAPTF Performance Testing
,”
Int. J. Pavement Eng.
, Vol.
8
, No.
3
,
2007
, pp.
187
201
. https://doi.org/10.1080/10298430601046682
3.
Donovan
,
P.
and
Tutumluer
,
E.
, “
Effect of Aircraft Load Wander on Unbound Aggregate Pavement Layer Stiffness and Deformation Behavior
,”
Proceedings of the ASCE 2008 Airfield and Highway Pavements Conference
,
Bellevue, WA
, Oct 15–18,
2008
, pp.
465
476
.
4.
Burland
,
J.B.
, “
Small is Beautiful—The Stiffness of Soils at Small Strains
,”
Can. Geotech. J.
, Vol.
26
, No.
4
,
1989
, pp.
499
516
. https://doi.org/10.1139/t89-064
5.
Hicks
,
R.G.
and
Monismith
,
C.L.
, “
Factors Influencing the Resilient Response of Granular Materials
,”
J. Highw. Res. Board
, Vol.
345
,
1971
, pp.
15
31
.
6.
Fredlund
,
D.G.
,
Morgenstern
,
N.R.
and
Widger
,
R.A.
, “
The Shear Strength of Unsaturated Soils
,”
Can. Geotech. J.
, Vol.
15
,
1978
, pp.
313
321
. https://doi.org/10.1139/t78-029
7.
Augustesen
,
A.
,
Liingaard
,
M.
, and
Lade
,
P.V.
, “
Evaluation of Time-Dependent Behavior of Soils
,”
Int. J. Geomech.
, Vol.
4
, No.
3
,
2004
, pp.
137
156
. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(137)
8.
Schmertmann
,
J.H.
, “
The Mechanical Ageing of Soils
,”
J. Geotech. Eng.
, Vol.
117
, No.
12
,
1991
, pp.
1288
1330
. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1288)
9.
McDowell
,
G.R.
and
Khan
,
J.J.
, “
Creep of Granular Materials
,”
Granular Matter
, Vol.
5
,
2003
, pp.
115
120
. https://doi.org/10.1007/s10035-003-0142-x
10.
Silvani
,
C.
,
D’esoyer
,
T.
, and
Bonelli
,
S.
, “
Discrete Modeling of Time-Dependent Rockfill
,”
Int. J. Numer. Anal. Methods Geomech.
, Vol.
33
,
2009
, pp.
665
685
. https://doi.org/10.1002/nag.743
11.
NCHRP
,
2011
, “
Mechanistic-Empirical Pavement Design Guide
,”http://onlinepubs.trb.org/onlinepubs/archive/mepdg/home.htm(Last accessed 25 Sept 2013).
12.
Collins
,
I.F.
, “
Elastic/Plastic Models for Soils and Sands
,”
Int. J. Mech. Sci.
, Vol.
47
,
2005
, pp.
493
508
. https://doi.org/10.1016/j.ijmecsci.2004.12.016
13.
Uzan
,
J.
, “
Characterization of Granular Material
,”
Transp. Res. Rec.
, Vol.
1022
,
1985
, pp.
52
59
.
14.
Lade
,
P.V.
and
Nelson
,
R.B.
, “
Modeling the Elastic Behavior of Granular Materials
,”
Int. J. Numer. Anal. Methods Geomech.
, Vol.
11
, No.
5
,
1987
, pp.
521
542
. https://doi.org/10.1002/nag.1610110507
15.
Adu-Osei
,
A.
,
Little
,
D.N.
, and
Lytton
,
R.L.
, “
Cross-Anisotropic Characterization of Unbound Granular Materials
,”
Transp. Res. Rec.
, Vol.
1757
,
2001
, pp.
82
91
. https://doi.org/10.3141/1757-10
16.
Di Prisco
,
C.
and
Imposimato
,
S.
, “
Time Dependent Mechanical Behavior of Loose Sands
,”
Mech. Cohesive-Frict. Mater.
, Vol.
1
,
1996
, pp.
45
73
. https://doi.org/10.1002/(SICI)1099-1484(199601)1:1<;45::AID-CFM3>3.0.CO;2-O
17.
Hagin
,
P.N.
,
2003
, “
Application of Viscoelastic, Viscoplastic, and Rate-and-State Friction Constitutive Laws to the Deformation of Unconsolidated Sands
,” Ph.D. Thesis,
Stanford University
, Stanford, CA.
18.
Di Benedetto
,
H.
, “
Small Strain Behavior and Viscous Effects on Sands and Sand-Clay Mixtures
,”
Soil Stress-Strain Behavior: Measurement, Modeling and Analysis
,
Springer Netherlands
,
2007
, pp.
159
190
.
19.
Ghiabi
,
H.
and
Selvadurai
,
A.P. S.
, “
Time-Dependent Mechanical Behavior of a Granular Medium used in Laboratory Investigations
,”
Int. J. Geomech.
, Vol.
9
, No.
1
,
2009
, pp.
1
8
. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:1(1)
20.
Rabaiotti
,
C.
,
2008
, “
Inverse Analysis in Rd. Geotechnics
,” Ph.D. Thesis,
ETH Zürich
, Zürich, Switzerland.
21.
Berthelot
,
C.
,
Podborochynski
,
D.
,
Marjerison
,
B.
, and
Gerbrandt
,
R.
, “
Saskatchewan Field Case Study of Triaxial Frequency Sweep Characterization to Predict Failure of a Granular Base Across Increasing Fines Content and Traffic Speed Applications
,”
J. Transp. Eng.
, Vol.
135
, No.
11
,
2009
, pp.
907
914
. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000054
22.
Desai
,
C.S.
,
Mechanics of Materials and Interfaces: The Disturbed State Concept
, 2nd ed.,
CRC Press
,
Boca Raton, FL
,
2001
.
23.
Desai
,
C.S.
, “
Unified DSC Constitutive Model for Pavement Materials With Numerical Implementation
,”
Int. J. Geomech.
, Vol.
7
, No.
2
,
2007
, pp.
83
101
. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:2(83)
24.
Desai
,
C.S.
, “
Constitutive Modeling and Computer Methods in Geotechnical Engineering
,”
Acta Geotech. Slov.
, Vol.
2010/1
,
2010
, pp.
5
29
.
25.
Guo
,
P.
and
Emery
,
J.
, “
Importance of Strain Level in Evaluating Resilient Modulus of Granular Materials
,”
Int. J. Pavement Eng.
, Vol.
12
, No.
2
,
2011
, pp.
187
199
. https://doi.org/10.1080/10298436.2010.549564
26.
Lekarp
,
F.
and
Dawson
,
A.
, “
Modeling Permanent Deformation Behavior of Unbound Granular Materials
,”
Constr. Build. Mater.
, Vol.
12
,
1998
, pp.
9
18
. https://doi.org/10.1016/S0950-0618(97)00078-0
27.
Cernia
,
G.
,
Cardoneb
,
F.
,
Virgilib
,
A.
, and
Camillia
,
S.
, “
Characterization of Permanent Deformation Behavior of Unbound Granular Materials Under Repeated Triaxial Loading
,”
Constr. Build. Mater.
, Vol.
28
, No.
1
,
2012
, pp.
79
87
. https://doi.org/10.1016/j.conbuildmat.2011.07.066
28.
Chaboche
,
J.L.
, “
Thermodynamic Formulation of Constitutive Equations and Application to the Viscoplasticity and Viscoelasticity of Metals and Polymers
,”
Int. J. Solids Struct.
, Vol.
34
, No.
18
,
1997
, pp.
2239
2254
. https://doi.org/10.1016/S0020-7683(96)00162-X
29.
Schapery
,
R.A.
, “
Nonlinear Viscoelastic and Viscoplastic Constitutive Equations With Growing Damage
,”
Int. J. Fract.
, Vol.
97
,
1999
, pp.
33
66
. https://doi.org/10.1023/A:1018695329398
30.
Levenberg
,
E.
,
2006
, “
Constitutive Modeling of Asphalt-Aggregate Mixes With Damage and Healing
,”Ph.D. Thesis,
Technion—Israel Institute of Technology
, Haifa, Israel.
31.
Liingaard
,
M.
,
Augustesen
,
A.
, and
Lade
,
P.V.
, “
Characterization of Models for Time-Dependent Behavior of Soils
,”
Int. J. Geomech.
, Vol.
4
, No.
3
,
2004
, pp.
157
177
. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(157)
32.
Di Benedetto
,
H.
,
Tatsuoka
,
F.
, and
Ishihara
,
M.
, “
Time-Dependent Shear Deformation Characteristics of Sand and their Constitutive Modeling
,”
Soils Found.
, Vol.
42
, No.
2
,
2002
, pp.
1
22
.
33.
Tatsuoka
,
F.
,
Shihara
,
M.
,
Di Benedetto
,
H.
, and
Kuwano
,
R.
, “
Time-Dependent Shear Deformation Characteristics of Geomaterials and their Simulation
,”
Soils Found.
, Vol.
42
, No.
2
,
2002
, pp.
103
129
. https://doi.org/10.3208/sandf.42.2_103
34.
Tatsuoka
,
F.
,
Di Benedetto
,
H.
,
Enomoto
,
T.
,
Kawabe
,
S.
, and
Kongkitkul
,
W.
, “
Various Viscosity Types of Geomaterials in Shear and Their Mathematical Expression
,”
Soils Found.
, Vol.
48
, No.
1
,
2008
, pp.
41
60
. https://doi.org/10.3208/sandf.48.41
35.
Duttine
,
A.
,
Tatsuoka
,
F.
,
Kongkitkul
,
W.
, and
Hirakawa
,
D.
, “
Viscous Behavior of Unbound Granular Materials in Direct Shear
,”
Soils Found.
, Vol.
48
, No.
3
,
2008
, pp.
297
318
. https://doi.org/10.3208/sandf.48.297
36.
Lade
,
P.V.
,
Liggio
,
C.D.
, and
Nam
,
J.
, “
Strain Rate, Creep, and Stress Drop-Creep Experiments on Crushed Coral Sand
,”
J. Geotech. Geoenviron. Eng.
, Vol.
135
, No.
7
,
2009
, pp.
941
953
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000067
37.
Peng
,
F.L.
,
Li
,
F.L.
,
Tan
,
Y.
, and
Kongkitkul
,
W.
, “
FEM Simulation of Viscous Properties for Granular Materials Considering the Loading Rate Effect
,”
Granular Matter
, Vol.
12
,
2010
, pp.
555
568
. https://doi.org/10.1007/s10035-010-0194-7
38.
Murayama
,
S.
,
Michihiro
,
K.
, and
Sakagami
,
T.
, “
Creep Characteristics of Sands
,”
Soils Found.
, Vol.
24
, No.
2
,
1984
, pp.
1
15
. https://doi.org/10.3208/sandf1972.24.2_1
39.
Di Benedetto
H.
and
Tatsuoka
,
F.
, “
Small Strain Behavior of Geomaterials: Modeling of Strain Rate Effects
,”
Soils Found.
, Vol.
37
, No.
2
,
1997
, pp.
127
138
. https://doi.org/10.3208/sandf.37.2_127
40.
Locket
,
F.J.
,
Nonlinear Viscoelastic Solids
,
Academic Press Inc.
,
London
,
1972
.
41.
Findley
,
W.N.
and
Lai
,
J.S.
, “
Creep and Recovery of 2618 Aluminum Alloy Under Combined Stress With a Representation by a Viscous-Viscoelastic Model
,”
J. Appl. Mech.
, Vol.
45
, No.
3
,
1978
, pp.
507
513
. https://doi.org/10.1115/1.3424353
42.
Uzan
,
J.
and
Levenberg
,
E.
, “
Advanced Testing and Characterization of Asphalt Concrete Materials in Tension
,”
Int. J. Geomech.
, Vol.
7
,
2007
, pp.
158
165
. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:2(158)
43.
ASTM D2940:
Standard Specification for Graded Aggregate Material for Bases or Subbases for Highways or Airports
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2009
.
44.
ASTM D854:
Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2010
.
45.
ASTM C127:
Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2012
.
46.
ASTM D1557:
Standard Test Methods for Laboratory Compaction Characteristics of Soil using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3))
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2012
.
47.
Perloff
,
W.H.
and
Pombo
,
L.E.
, “
End Restraint Effects in the Triaxial Test
,”
Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering
, Vol.
1
,
Sociedad Mexicana de Mecanica
,
de Suelos, Mexico City, Mexico
,
1969
, pp.
327
333
.
48.
AASHTO T307
,
2007
, “
Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials
,”
American Association of State and Highway Transportation Officials
,
Washington, DC
.
49.
Shklarsky
,
E.
, “
Laboratory Compaction of Pavement Materials by Vibration
,”
Proceedings of the International Conference on Compaction
, Vol.
2
,
Paris France
, April 22–24,
1980
, pp.
469
474
.
50.
Graham
,
D.S.
and
Elton
,
D.
, “
Preparing Very Loose Granular Triaxial Specimens by Ex Situ Freezing
,”
Geotech. Test. J.
, Vol.
33
, No.
6
,
2010
, pp.
1
6
.
51.
Savitzky
,
A.
and
Golay
,
M.J. E.
, “
Smoothing and Differentiation of Data by Simplified Least Squares Procedures
,”
Anal. Chem.
, Vol.
36
, No.
8
,
1964
, pp.
1627
1639
. https://doi.org/10.1021/ac60214a047
52.
Gorry
,
P.A.
, “
General Least-Squares Smoothing and Differentiation by the Convolution (Savitzky-Golay) Method
,”
Anal. Chem.
, Vol.
62
,
1990
, pp.
570
573
. https://doi.org/10.1021/ac00205a007
53.
Eilers
,
P.H. C.
, “
A Perfect Smoother
,”
Anal. Chem.
, Vol.
75
, No.
14
,
2003
, pp.
3631
3636
. https://doi.org/10.1021/ac034173t
54.
Stickel
,
J.J.
, “
Data Smoothing and Numerical Differentiation by a Regularization Method
,”
Comput. Chem. Eng.
, Vol.
34
,
2010
, pp.
467
475
. https://doi.org/10.1016/j.compchemeng.2009.10.007
55.
Horlick
,
G.
, “
Digital Data Handling of Spectra Utilizing Fourier Transformations
,”
Anal. Chem.
, Vol.
44
, No.
6
,
1972
, pp.
943
947
. https://doi.org/10.1021/ac60314a014
56.
Kalman
,
R.E.
, “
A New Approach to Linear Filtering and Prediction Problems
,”
J. Basic Eng.
, Vol.
82
, No.
D
,
1960
, pp.
35
45
. https://doi.org/10.1115/1.3662552
57.
Hamming
,
R.W.
,
Digital Filters
, 3rd ed.,
Dover Publications Inc.
,
New York
,
1989
.
58.
Klasson
,
K.T.
, “
Experimental Data Analysis: An Algorithm for Determining Rates and Smoothing Data
,”
Appl. Biochem. Biotechnol.
, Vol.
63/65
,
1997
, pp.
339
348
. https://doi.org/10.1007/BF02920435
59.
Ramsay
,
J.
and
Silverman
,
B.W.
,
Functional Data Analysis
, 2nd ed.,
Springer Series in Statistics
,
New York
,
2005
.
60.
Bellman
,
R.
and
Roth
,
R.
, “
Curve Fitting by Segmented Straight Lines
,”
J. Am. Stat. Assoc.
, Vol.
64
, No.
327
,
1969
, pp.
1079
1084
. https://doi.org/10.1080/01621459.1969.10501038
61.
McGee
,
V.E.
and
Carleton
,
W.T.
, “
Piecewise Regression
,”
J. Am. Stat. Assoc.
, Vol.
65
, No.
331
,
1970
, pp.
1109
1124
. https://doi.org/10.2307/2284278
62.
Jupp
,
D.L. B.
, “
Approximation to Data by Splines With Free Knots
,”
SIAM J. Numer. Anal.
, Vol.
15
, No.
2
,
1978
, pp.
328
343
. https://doi.org/10.1137/0715022
63.
Smith
,
T.L.
, “
Empirical Equations for Representing Viscoelastic Functions and for Deriving Spectra
,”
J. Polym. Sci.
, Vol.
35
, No.
C
,
1971
, pp.
39
50
. https://doi.org/10.1002/polc.5070350105
64.
Levenberg
,
E.
, “
Viscoplastic Response and Modeling of Asphalt-Aggregate Mixes
,”
J. Mater. Struct.
, Vol.
42
, No.
8
,
2009
, pp.
1139
1151
. https://doi.org/10.1617/s11527-008-9449-8
65.
Armstrong
,
P.J.
and
Fredrick
,
C.O.
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,”Report RD/B/N731,
Central Electricity Generating Board, Berkeley Nuclear Laboratory
, Berkeley, UK,
1996
.
66.
Lasdon
,
L.S.
and
Waren
,
A.D.
, “
GRG2—An All Fortran General Purpose Nonlinear Optimizer
,”
Sigmap Bull.
, Vol.
30
,
1981
, pp.
10
11
. https://doi.org/10.1145/1111268.1111270
67.
Fylstra
,
D.
,
Lasdon
,
L.
,
Watson
,
J.
, and
Waren
,
A.
, “
Design and Use of the Microsoft Excel Solver
,”
Interfaces
, Vol.
28
, No.
5
,
1998
, pp.
29
55
. https://doi.org/10.1287/inte.28.5.29
68.
Osyczka
,
A.
, “
An Approach to Multicriterion Optimization Problems for Engineering Design
,”
Comput. Methods Appl. Mech. Eng.
, Vol.
15
,
1978
, pp.
309
333
. https://doi.org/10.1016/0045-7825(78)90046-4
69.
Park
,
S.W.
and
Schapery
,
R.A.
, “
Methods of Interconversion Between Linear Viscoelastic Material Functions. Part I—A Numerical Method Based on Prony Series
,”
Int. J. Solids Struct.
, Vol.
36
,
1999
, pp.
1653
1675
. https://doi.org/10.1016/S0020-7683(98)00055-9
70.
Hopkins
,
I.L.
and
Hamming
,
R.W.
, “
On Creep and Relaxation
,”
J. Appl. Phys.
, Vol.
28
, No.
8
,
1957
, pp.
906
909
. https://doi.org/10.1063/1.1722885
This content is only available via PDF.
You do not currently have access to this content.