Abstract

Thermal strain occurs in asphalt pavement from thermal contraction and expansion due to temperature decrease and increase, respectively. No standard procedure to measure thermal strain is available. This study determines thermal strain per unit increase or decrease in temperature (also referred to as coefficient of thermal contraction or thermal expansion (CTC or CTE)) in an instrumented pavement section on Interstate 40 (I-40) in New Mexico. Firstly, the Horizontal Asphalt Strain Gages (HASGs) are calibrated for temperature to measure thermal strain. In the second step, the thermal strain variations in fall, winter, and summer are determined. For validation, the CTC and the CTE values are measured in the laboratory on three field collected cylindrical cored samples using Linear Variable Displacement Transducers (LVDTs) and temperature sensors. The LVDTs are also calibrated using a cylindrical zerodur block to account the temperature effect on it. Results show that field CTC and CTE values are close to the laboratory findings.

References

1.
Rajbonshi
,
P.
and
Das
,
A.
, “
Estimation of Temperature Stress and Low-Temperature Crack Spacing in Asphalt Pavements
,”
J. Transp. Eng.
, Vol.
135
, No.
10
,
2009
, pp.
745
752
. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000050
2.
Timm
,
D.H.
,
Guzina
,
B.B.
, and
Voller
,
V.R.
, “
Prediction of Thermal Crack Spacing
,”
Int. J. Solids Struct.
, Vol.
40
,
2003
, pp.
125
142
. https://doi.org/10.1016/S0020-7683(02)00496-1
3.
Al-Qadi
,
I.
,
Hassan
,
M.
and
Elsefi
,
M.
, “
Field and Theoretical Evaluation of Thermal Fatigue Cracking in Flexible Pavements
,”
Transp. Res. Rec.
, Vol.
2005
,
1919
, pp.
87
95
.
4.
Bayat
,
A.
and
Knight
,
M.
, “
Measurement and Analysis of Flexible Pavement Thermal-Induced Strains
,”
Proceedings of the Transportation Research Board Annual Meeting
, Washington, D.C., Jan 10–14,
2010
, Paper No. 10-3654.
5.
Baker
,
H.B.
and
Bath
,
M.R.
, “
Minnesota Rd. Research Project: Load Response Instrumentation Installation and Testing Procedures
,” Report No.MN/PR-94/01,
Minnesota DOT
, St. Paul, MN,
1994
.
6.
Timm
,
D.H.
,
Priest
,
A.L.
, and
McEwen
,
T.V.
, “
Design and Instrumentation of the Structural Pavement Experiment at the NCAT Test Track
,” NCAT Report 04-01,
Alabama Department of Transportation
, Auburn, AL,
2004
.
7.
Timm
,
D.H.
, “
Design, Construction and Instrumentation of the 2006 Test Track Structural Study
,” NCAT Report 09-01,
Alabama Department of Transportation
, Auburn, AL,
2009
.
8.
Terrel
,
R.L.
and
Krukar
,
M.
, “
Evaluation of Test Tracking Pavements
,”
J. Assoc. Asph. Paving Technol.
, Vol.
39
,
1970
, pp.
273
296
.
9.
Metcalf
,
L.
, “
Application of Full-Scale Accelerated Pavement Testing
,”
NCHRP Synthesis 235, Proceedings of the Transportation Research Board Annual Meeting
, Washington, D.C., Jan 14–18,
1996
.
10.
Solaimanian
,
M.
,
Stoffels
,
S.
,
Yin
,
H.
, and
Premkumar
,
L.
, “
SuperPave In-Situ Stress/Strain Investigation-Phase II
,” Report No. FHWA-PA-2009-009-999012 HA2006-02,
Commonwealth of Pennsylvania
, PA Department of Transportation, PA,
2009
.
11.
Zaman
,
M.
,
Muraleetharan
,
K.
,
Solanki
,
P.
,
Hossain
N.
, and
Breidy
,
M.
, “
Field Performance of an Instrumented Pavement in Oklahoma
,”
Proceedings of the Southeastern Asphalt User/Producer Group Annual Conference
, Oklahoma City, OK, Dec 6–9,
2010
.
12.
Domaschuk
,
L.
,
Skarsgard
,
P.
, and
Christianson
,
R.
, “
Cracking of Asphalt Pavement due to Thermal Contraction
,”
Proceedings of the Canadian Good Roads Associations
,
1964
, pp.
395
402
.
13.
Littlefield
,
G.
, “
Thermal Expansion and Contraction Characteristics in Utah Asphaltic Concretes
,”
Proc. Assoc. Asph. Paving Technol.
, Vol.
36
,
1967
, pp.
673
702
.
14.
Jones
,
M.
,
Darter
,
I.
, and
Littlefield
,
G.
, “
Thermal Expansion-Contraction of Asphaltic Concrete
,”
Proc. Assoc. Asph. Paving Technol.
, Vol.
37
,
1968
, pp.
56
100
.
15.
Osterkamp
,
E.
, “
Low Temperature Cracks in Asphalt Pavement in Interior Alaska
,” Report No. AK-RD-86-26,
Arkansas Department of Transportation and Public Facilities
, Little Rock, AK,
1986
.
16.
Stoffels
,
S.
and
Kwanda
,
F.
, “
Determination of the Co-Efficient of Thermal Contraction of Asphalt Concrete Using the Resistance Strain Gauge Technique
,”
J. Assoc. Asph. Paving Technol.
, Vol.
65
,
1996
, pp.
73
93
.
17.
Metha
,
A.
,
Stoffels
,
A.
, and
Christensen
,
W.
, “
Determination of Thermal Contraction of Asphalt Concrete Using IDT Hardware
,”
J. Assoc. Asph. Paving Technol.
, Vol.
68
,
1999
, pp.
349
369
.
18.
Zeng
,
M.
and
Shields
,
D.
, “
Nonlinear Thermal Expansion and Contraction of Asphalt Concrete
,”
Can. J. Civ. Eng.
, Vol.
26
, No.
1
,
1999
, pp.
26
34
. https://doi.org/10.1139/l98-041
19.
Mamlouk
,
M.
,
Witczak
,
M.
,
Kaloush
,
K.
, and
Hasan
,
N.
, “
Determination of Thermal Properties of Asphalt Mixtures
,”
J. Test. Eval.
, Vol.
33
, No.
2
,
2005
, pp.
1
9
.
20.
Shortley
,
G.
and
Williams
,
D.
,
Elements of Physics, for Students of Science and Engineering
, 4th ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
,
1965
.
21.
Hiltunen
,
D.R.
and
Roque
,
R.
, “
A Mechanistic-Based Prediction Model for Thermal Cracking of Asphalt Concrete Pavements
,”
Proc. Assoc. Asph. Paving Technol.
, Vol.
63
,
1994
, pp.
81
108
.
This content is only available via PDF.
You do not currently have access to this content.