Abstract

In this study, low- and high-carbon rice husk ash (RHA) in their as-received and ground forms were characterized by means of different methods in order to evaluate their performance in Portland cement mixtures. RHA-cement pastes and mortars, at three different RHA replacement levels of 0 %, 10 %, and 20 %, were prepared at a constant water/cement ratio of 0.485. Results from this investigation indicate that the material characteristics of low- and high-carbon RHA were significantly different in most of the tests conducted. In the as-received condition, the high-carbon RHA had a greater bulk density than low-carbon RHA, but their bulk densities were comparable after grinding. The low-carbon RHA was more effective in its pozzolanic reaction than high-carbon RHA in both ground and as-received conditions. The microstructures of both low-carbon and high-carbon RHA cement pastes were denser than those of control pastes. At a given dosage of RHA and superplasticizer, the ground and the as-received low-carbon RHA mixtures performed significantly better than the high-carbon RHA mixtures. Similarly, mixtures with low-carbon RHA showed significantly higher strength activity indices than those with high-carbon RHA at both dosage levels investigated. Grinding RHA was found to be beneficial in all the tests conducted, as the ground RHA mixtures depleted more calcium hydroxide, registered higher flow values, and possessed greater strength than unground RHA mixtures at all replacement levels. Thus, the grinding process significantly helps in utilizing both high- and low-carbon RHA in concrete.

References

1.
Mehta
,
P. K.
and
Pitt
,
N.
, “
Energy and Industrial Materials From Crop Residue
,”
Resource, Recovery and Conservation
, Vol.
2
,
1976
, pp.
23
38
. https://doi.org/10.1016/0304-3967(76)90015-9
2.
Pitt
,
N.
, “
Process for the Preparation of Siliceous Ash
,” U.S. Patent No. 3,959,007 (
1978
).
3.
Boateng
,
A. A.
,
Fan
,
L. T.
,
Walawender
,
W. P.
, and
Chee
,
C. S.
, “
Morphological Development of Rice-Hull-Derived Charcoal in a Fluidized-Bed Reactor
,”
Fuel
, Vol.
70
,
1991
, pp.
995
1000
. https://doi.org/10.1016/0016-2361(91)90057-H
4.
Savant
,
N. K.
,
Snyder
,
G. H.
, and
Datnoff
,
L. E.
, “
Silicon Management and Sustainable Rice Production
,”
Advances in Agronomy
, Vol.
58
,
1997
, pp.
151
199
. https://doi.org/10.1016/S0065-2113(08)60255-2
5.
Chakerverty
,
A.
and
Kaleemullah
,
S.
, “
Conversion of Rice Husk into Amorphous Silica and Combustible Gas
,”
Energy Convers. Manage.
, Vol.
32
,
1991
, pp.
565
570
. https://doi.org/10.1016/0196-8904(91)90116-Z
6.
Food and Agriculture Organization of the United Nations
,
2007
, “
FAO: Food and Agriculture Organization of the United Nations, for a World Without Hunger
,” http://www.fao.org (Last accessed 31 July
2009
).
7.
Nehdi
,
M.
,
Duquette
,
J.
, and
Damatty
,
A.
, “
Performance of Rice Husk Ash Produced Using a New Technology as a Mineral Admixture in Concrete
,”
Cem. Concr. Res.
, Vol.
33
,
2003
, pp.
1203
1210
. https://doi.org/10.1016/S0008-8846(03)00038-3
8.
Vempati
,
R. K.
, “
Composition and Method of Forming Low-Carbon, Amorphous Siliceous Ash From Siliceous Waste Material
,” U.S. Patent No. 6444186 B1 (
2002
).
9.
Mehta
,
P. K.
, “
Siliceous Ashes and Hydraulic Cements Prepared Therefrom
,” Belgian Patent No. 802909 (July
1973
)/U.S. Patent No. 4105459 (August
1978
).
10.
Chopra
,
S. K.
,
Ahluwalia
,
S. C.
, and
Laxmi
,
S.
, “
Technology and Manufacture of Rice-husk Ash Masonry (RHAM) Cement
,”
Proceedings of ESCAP/RCTT Workshop on Rice Husk Ash Cement
,
New Delhi, India
,
1981
.
11.
Nair
,
D. G.
,
Fraaij
,
A.
,
Klaassen
,
A. A. K.
, and
Kentgens
,
A. P. M.
, “
A Structural Investigation Relating to the Pozzolanic Activity of Rice Husk Ashes
,”
Cem. Concr. Res.
, Vol.
38
(
6
),
2007
, pp.
861
869
. https://doi.org/10.1016/j.cemconres.2007.10.004
12.
Yeoh
,
A. K.
,
Bidin
,
R.
,
Chong
,
C. N.
, and
Tay
,
C. Y.
, “
The Relationship Between Temperature and Duration of Burning of Rice-Husk in the Development of Amorphous Rice-Husk Ash Silica
,”
Proceedings of UNIDO/ESCAP/RCTT, Follow-up Meeting on Rice-Husk Ash Cement
,
Alor Setar, Malaysia
,
1979
.
13.
Muthadhi
,
A.
and
Kothandaram
,
S.
, “
Optimum Production Conditions for Reactive Rice Husk Ash
,”
Mater. Struct.
, Vol.
43
(
9
),
2010
, pp.
1303
1315
. https://doi.org/10.1617/s11527-010-9581-0
14.
Cook
,
D. J.
and
Suwanvitaya
,
P.
, “
Properties and Behavior of Lime Rice Husk Ash Cements
,”
ACI-SP 79-45
,
American Concrete Institute
,
Farmington Hills, MI
,
1983
, pp.
831
842
.
15.
Khalaf
,
M. N.
and
Yousif
,
H. A.
, “
Use of Rice Husk Ash in Concrete
,”
International Journal of Cement Composites and Lightweight Concrete
, Vol.
6
(
4
),
1984
, pp.
241
248
. https://doi.org/10.1016/0262-5075(84)90019-8
16.
James
,
J.
and
Rao
,
S.
, “
Reactivity of Rice Husk Ash
,”
Cem. Concr. Res.
, Vol.
16
(
3
),
1986
, pp.
296
302
. https://doi.org/10.1016/0008-8846(86)90104-3
17.
Hwang
,
C. L.
and
Wu
,
D. S.
, “
Properties of Cement Paste Containing RHA
,”
Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete—Proceedings of the Third International Conference
, ACI SP-114,
Malhotra
V. M.
, Ed.,
American Concrete Institute
,
Detroit, MI
,
1989
, pp.
733
762
.
18.
Boateng
,
A. A.
and
Skeete
,
D. A.
, “
Incineration of Rice Hull for Use as a Cementitious Material: The Guyana Experience
,”
Cem. Concr. Res.
, Vol.
20
,
1990
, pp.
795
802
. https://doi.org/10.1016/0008-8846(90)90013-N
19.
Ikpong
,
A. A.
and
Okpala
,
D. C.
, “
Strength Characteristics of Medium Workability Ordinary Portland Cement Rice Husk Ash Concrete
,”
Build. Environ.
, Vol.
27
(
1
),
1992
, pp.
105
111
. https://doi.org/10.1016/0360-1323(92)90014-G
20.
Zhang
,
M. H.
,
Lastra
,
R.
, and
Malhotra
,
V. M.
, “
Rice Husk Ash Paste and Concrete: Some Aspects of Hydration and the Microstructure of the Interfacial Zone between the Aggregate and Paste
,”
Cem. Concr. Res.
, Vol.
26
(
6
),
1996
, pp.
963
977
. https://doi.org/10.1016/0008-8846(96)00061-0
21.
Ismail
,
M. S.
and
Waliuddin
,
A. M.
, “
Effect of Rice Husk Ash on High Strength Concrete
,”
Constr. Build. Mater.
, Vol.
10
(
7
),
1996
, pp.
521
526
. https://doi.org/10.1016/0950-0618(96)00010-4
22.
Yu
,
Q.
,
Sawayama
,
K.
,
Sugita
,
M.
,
Shoya
,
M.
, and
Isojima
,
Y.
, “
The Reaction Between Rice Husk Ash and Calcium Hydroxide Solution and the Nature of Its Product
,”
Cem. Concr. Res.
, Vol.
29
,
1999
, pp.
37
43
. https://doi.org/10.1016/S0008-8846(98)00172-0
23.
Sensale
,
G. R.
and
Molin
,
D. C. C. D.
, “
Study of Influence of Rice Husk Ash on Compressive Strength of Concrete at Different Ages
,”
ACI SP-186-13
,
American Concrete Institute
,
Farmington Hills, MI
,
1999
, pp.
213
229
.
24.
Sugitha
,
S.
,
Yu
,
Q.
,
Shoya
,
M.
,
Tsukinaga
,
Y.
, and
Isojima
,
Y.
, “
The Resistance of Rice Husk Ash Concrete to Carbonation, Acid Attack and Chloride Ion Penetration
,”
ACI SP-172-2
,
American Concrete Institute
,
Farmington Hills, MI
,
1999
, pp.
29
43
.
25.
Mahmud
,
H. B.
,
Majuar
,
E.
,
Zain
,
M. F. M.
, and
Hamid
,
N. B. A. A.
, “
Mechanical Properties and Durability of High Strength Concrete Containing Rice Husk Ash
.”
ACI Mater. J.
, Vol.
221
,
2004
, pp.
751
765
.
26.
Santos
,
S.
and
Prudencio
,
L. R.
, “
Rice Husk Ash With Low Carbon Content
,”
ACI SP-229-26
,
2005
, pp.
409
420
.
27.
Bui
,
D. D.
,
Hu
,
J.
, and
Stroeven
,
P.
, “
Particle Size Effect on the Strength of Rice Husk Ash Blended Gap-Graded Portland Cement Concrete
,”
Cem. Concr. Compos.
, Vol.
27
,
2005
, pp.
357
366
. https://doi.org/10.1016/j.cemconcomp.2004.05.002
28.
Sensale
,
G. R.
, “
Strength Development of Concrete With Rice Husk Ash
,”
Cem. Concr. Compos.
, Vol.
28
,
2006
, pp.
158
160
. https://doi.org/10.1016/j.cemconcomp.2005.09.005
29.
Sakr
,
K.
, “
Effects of Silica Fume and Rice Husk Ash on the Properties of Heavy Weight Concrete
,”
J. Mater. Civ. Eng.
, Vol.
18
(
3
),
2006
, pp.
367
376
.
30.
Gastaldini
,
A. L. G.
,
Isaia
,
G. C.
,
Gomes
,
N. S.
, and
Sperb
,
J. E. K.
, “
Chloride Penetration and Carbonation in Concrete With Rice Husk Ash and Chemical Activators
,”
Cem. Concr. Compos.
, Vol.
29
,
2007
, pp.
176
180
. https://doi.org/10.1016/j.cemconcomp.2006.11.010
31.
Saraswathy
,
V.
and
Song
,
H. W.
, “
Corrosion Performance of Rice Husk Ash Blended Concrete
,”
Constr. Build. Mater.
, Vol.
21
(
8
),
2007
, pp.
1779
1784
. https://doi.org/10.1016/j.conbuildmat.2006.05.037
32.
Giaccio
,
G.
,
Sensale
,
G. R.
, and
Zerbino
,
R.
, “
Failure Mechanism of Normal and High-Strength Concrete With Rice-husk Ash
,”
Cem. Concr. Compos.
, Vol.
29
(
7
),
2007
, pp.
566
574
. https://doi.org/10.1016/j.cemconcomp.2007.04.005
33.
Ganesan
,
K.
,
Rajagopal
,
K.
, and
Thangavel
,
K.
, “
Rice Husk Ash Blended Cement: Assessment of Optimal Level of Replacement for Strength and Permeability Properties of Concrete
,”
Constr. Build. Mater.
, Vol.
22
(
8
),
2008
, pp.
1675
1683
. https://doi.org/10.1016/j.conbuildmat.2007.06.011
34.
Mehta
,
P. K.
and
Montiero
,
P. J. M.
,
Concrete: Microstructure, Properties and Materials
, 3rd ed.,
McGraw-Hill
,
New York
,
2006
.
35.
Ferraro
,
R. M.
,
Nanni
,
A.
,
Vempati
,
R. K.
, and
Matta
,
F.
, “
Carbon Neutral Off-White Rice Husk Ash as a Partial White Cement Replacement
,”
J. Mater. Civ. Eng.
, Vol.
22
(
10
),
2010
, pp.
1078
1083
.
36.
Mehta
,
P. K.
, “
Properties of Blended Cements Made from RHA
,”
ACI J.
, Vol.
74
(
9
),
1977
, pp.
440
442
.
37.
ASTM C150
:
Standard Specification for Portland Cement
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2012
.
38.
ASTM C192
:
Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2012
.
39.
ASTM C230
:
Standard Specification for Flow Table for Use in Tests of Hydraulic Cement
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2008
.
40.
ASTM C1437
:
Standard Test Method for Flow of Hydraulic Cement Mortar
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2007
.
41.
ASTM C311
:
Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2013
.
42.
Mehta
,
P. K.
, “
The Chemistry and Technology of Cement Made from Rice Husk Ash
,”
Proceedings of the Workshop on Rice Husk Ash Cement
,
Regional Center for Technology Transfer
,
Bangalore, India
,
1979
, pp.
113
122
.
43.
Lange
,
F.
,
Mortel
,
H.
, and
Rudert
,
V.
, “
Dense Packing of Cement Pastes and Resulting Consequences on Mortar Properties
,”
Cem. Concr. Res.
, Vol.
27
(
10
), pp.
1481
1488
.
44.
Larrard
,
D.
and
Sedran
,
T.
, “
Optimization of Ultra-High Performance Concrete Using a Packing Mode
,”
Cem. Concr. Res.
, Vol.
25
(
7
),
1996
, pp.
1501
1511
.
45.
Chatveera
,
B.
and
Lertwattanaruk
,
P.
, “
Evaluation of Sulfate Resistance of Cement Mortars Containing Black Rice Husk Ash
,”
J. Environ. Manage.
, Vol.
90
(
3
),
2009
, pp.
59
66
.
46.
Rukson
,
S.
,
Chindaprasirt
,
P.
, and
Mahachai
,
R.
, “
Effect of Grinding on Chemical and Physical Properties of Rice Husk Ash
,”
International Journal of Minerals, Metallurgy and Materials
, Vol.
16
(
2
),
2009
, pp.
242
247
. https://doi.org/10.1016/S1674-4799(09)60041-8
47.
Harish
,
K. V.
and
Rangaraju
,
P. R.
, “
Fundamental Investigations into the Performance of a Carbon-neutral Rice Husk Ash as Supplementary Cementing Material
,”
Transportation Research Record. 2164
,
Transportation Research Board
,
Washington, D.C.
,
2010
, pp.
26
35
.
48.
MSDS Data Sheet for Glenium 7500 High-Range Water Reducing Admixture
,” BASF Construction Chemicals, http://www.basf-admixtures.com/en/products/highrange/glenium7500/Pages/default.aspx, Last accessed 12/21/2012.
This content is only available via PDF.
You do not currently have access to this content.