Abstract

Laboratory large-scale direct shear tests were carried out on five different recycled construction and demolition materials, such as crushed concrete (CC), crushed rock (CR), crushed brick (CB), reclaimed asphalt pavement (RAP), and recycled glass (RG). The shear strength parameters were evaluated with a large shear test machine for different values of normal stress ranging from 30 to 200 kPa. Resulting values of cohesion were found to vary in a wide range between 8.55 kPa to 284.5 kPa, whereas coefficient of internal friction varies between 44.6° to 52.1°. The failure envelopes for all materials investigated are straight-line failure envelopes. Crushed rock and crushed concrete showed high cohesion of 284 kPa and 154 kPa, respectively, whereas reclaimed asphalt pavement and recycled glass showed low cohesion of 8.55 kPa and 14 kPa, respectively. Meanwhile, crushed brick showed a medium cohesion of 61.2 kPa. Further, the volumetric behaviours of the recycled materials are dilatancy except for reclaimed asphalt pavement at low normal stress. The results of the shear strength tests indicate that CR, CC, and CB and blends of RAP and medium recycled glass (MRG) with other materials can be viable materials to be sustainably used in pavement sub-base applications.

References

1.
Bossink
,
B. A. G.
and
Brouwers
,
H. J. H.
, “
Construction Waste: Quantification and Source Evaluation
,”
J. Constr. Eng. Manage.
, Vol.
122
(
1
),
1996
, pp.
55
60
. https://doi.org/10.1061/(ASCE)0733-9364(1996)122:1(55)
2.
Kartam
,
N.
,
Al-Mutairi
,
N.
,
Al-Ghusain
,
I.
, and
Al-Humoud
,
J.
, “
Environmental Management of Construction and Demolition Waste in Kuwait
,”
Waste Manage.
, Vol.
24
,
2004
, pp.
1049
1059
. https://doi.org/10.1016/j.wasman.2004.06.003
3.
Poon
,
C. S.
, “
Management and Recycling of Demolition Waste in Hong Kong
,”
Waste Manage. Res.
, Vol.
15
,
1997
, pp.
561
572
.
4.
Townsend
,
T. G.
,
Jang
,
Y.
, and
Thurn
,
L. G.
, “
Simulation of Construction and Demolition Waste Leachate
,”
J. Environ. Eng.
, Vol.
125
(
11
),
1999
, pp.
1071
1081
. https://doi.org/10.1061/(ASCE)0733-9372(1999)125:11(1071)
5.
Fatta
,
D.
,
Papadopoulos
,
A.
,
Avramikos
,
E.
,
Sgourou
,
E.
,
Moustakas
,
K.
,
Kourmoussis
,
F.
,
Mentzis
,
A.
, and
Loizidou
,
M.
, “
Generation and Management of Construction and Demolition Waste in Greece—An Existing Challenge
,”
Res., Conserv. Recy.
, Vol.
40
,
2003
, pp.
81
91
. https://doi.org/10.1016/S0921-3449(03)00035-1
6.
Wood
,
R.
, “
Construction and Demolition Debris: A Crisis Is Building
,”
Waste Age
, Vol.
23
,
1992
, pp.
26
36
.
7.
Gavilan
,
R. M.
and
Bernold
,
L. E.
, “
Source Evaluation of Solid Waste in Building Construction
,”
J. Constr. Eng. Manage.
, Vol.
120
(
5
),
1994
, pp.
36
52
. https://doi.org/10.1061/(ASCE)0733-9364(1994)120:3(536)
8.
Apotheker
,
S.
, “
Construction and Demolition Debris—The Invisible Waste Stream
,”
Res. Conserv. Recy.
,
1990
, Vol.
9
, pp.
66
74
.
9.
Oglesby
,
C. H.
,
Parker
,
H. W.
, and
Howell
,
G. A.
,
Productivity Improvement in Construction
,
McGraw-Hill
,
New York
,
1989
.
10.
Kalin
,
Z.
, “
Canada Targets C & D Debris
,”
Biocycle
, Vol.
32
(
1
),
1991
, pp.
35
36
.
11.
Spencer
,
R.
, “
Recycling Opportunities for Demolition Debris
,”
Biocycle
, Vol.
30
(
11
),
1989
, pp.
42
44
.
12.
Recycling Construction and Demolition Material: Guidance on Complying With the Occupational Health and Safety (Asbestos) Regulations 2003
, 1st ed.,
WorkSafe
,
Melbourne, Victoria
,
2006
.
13.
Annual Survey of Victorian Recycling Industries 2004–2005
,
Sustainability Victoria
,
2005
.
14.
Poon
,
C. S.
and
Chan
,
D.
, “
Feasible Use of Recycled Concrete Aggregates and Crushed Clay Brick as Unbound Road Sub-Base
,”
Constr. Build. Mater.
, Vol.
20
,
2006
, pp.
578
585
. https://doi.org/10.1016/j.conbuildmat.2005.01.045
15.
Debieb
,
F.
and
Kenai
,
S.
, “
The Use of Coarse and Fine Crushed Bricks as Aggregate in Concrete
,”
Constr. Build. Mater.
, Vol.
22
,
2008
, pp.
886
893
. https://doi.org/10.1016/j.conbuildmat.2006.12.013
16.
Poon
,
C. S.
and
Chan
,
D.
, “
Paving Blocks Made With Recycled Concrete Aggregate and Crushed Clay Brick
,”
Constr. Build. Mater.
, Vol.
20
,
2006
, pp.
569
577
. https://doi.org/10.1016/j.conbuildmat.2005.01.044
17.
Bianchini
,
G.
,
Marrocchino
,
E.
,
Tassinari
,
R.
, and
Vaccaro
,
C.
, “
Recycling of Construction and Demolition Waste Materials: A Chemical–Mineralogical Appraisal
,”
Waste Manage.
, Vol.
25
,
2005
, pp.
149
159
. https://doi.org/10.1016/j.wasman.2004.09.005
18.
Chung
,
S.-S.
and
Lo
,
C. W. H.
, “
Evaluating Sustainability in Waste Management: The Case of Construction and Demolition, Chemical and Clinical Wastes in Hong Kong
,”
Res. Conserv. Recy.
, Vol.
37
,
2003
, pp.
119
145
. https://doi.org/10.1016/S0921-3449(02)00075-7
19.
Huang
,
W.-L.
,
Lin
,
D.-H.
,
Chang
,
N.-B.
, and
Lin
,
K.-S.
, “
Recycling of Construction and Demolition Waste via a Mechanical Sorting Process
,”
Res. Conserv. Recy.
, Vol.
37
,
2002
, pp.
23
37
. https://doi.org/10.1016/S0921-3449(02)00053-8
20.
Rao
,
A.
,
Jha
,
K. N.
, and
Misra
,
S.
, “
Use of Aggregates from Recycled Construction and Demolition Waste in Concrete
,”
Res. Conserv. Recy.
, Vol.
50
,
2007
, pp.
70
81
. https://doi.org/10.3141/2021-09
21.
Tam
,
V. W. Y.
and
Tam
,
C. M.
, “
A Review on the Viable Technology for Construction Waste Recycling
,”
Res., Conserv. Recy.
,
2006
, Vol.
47
, pp.
209
221
. https://doi.org/10.1016/j.resconrec.2005.12.002
22.
Arulrajah
,
A.
,
Piratheepan
,
J.
,
Disfani
,
M. M.
, and
Bo
,
M. W.
, “
Geotechnical and Geoenvironmental Properties of Recycled Construction and Demolition Materials in Pavement Subbase Applications
,”
J. Mater. Civil Eng.
,
2012
, doi: https://doi.org/10.1061/(ASCE)MT. 1943-5533.0000652.
23.
Arulrajah
,
A.
,
Piratheepan
,
J.
,
Ali
,
M. M. Y.
, and
Bo
,
M. W.
, “
Geotechnical Properties of Recycled Concrete Aggregate in Pavement Sub-Base Applications
,”
Geotech. Test. J.
, Vol.
35
(
5
),
2012
, pp.
1
9
. https://doi.org/10.1520/GTJ103402
24.
Recycling Industry Annual Survey 2008–2009
,
Sustainability Victoria
,
2010
.
25.
Arulrajah
,
A.
,
Piratheepan
,
J.
,
Bo
,
M. W.
, and
Sivakugan
,
N.
, “
Geotechnical Characteristics of Recycled Crushed Brick Blends for Pavement Sub-Base Applications
,”
Can. Geotech. J.
, Vol.
49
(
7
),
2012
, pp.
796
811
. https://doi.org/10.1139/t2012-041
26.
Arulrajah
,
A.
,
Piratheepan
,
J.
,
Aatheesan
,
T.
, and
Bo
,
M. W.
, “
Geotechnical Properties of Recycled Crushed Brick in Pavement Applications
,”
J. Mater. Civil Eng.
, Vol.
23
(
10
),
2011
, pp.
1444
1542
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000319
27.
Aatheesan
,
T.
,
Arulrajah
,
A.
,
Bo
,
M. W.
,
Vuong
,
B.
, and
Wilson
,
J.
, “
Crushed Brick Blends with Crushed Rock for Pavement Systems
,”
Proceedings of the Institution of Civil Engineers (UK), Waste Res. Manage.
, Vol.
163
(
1
),
2010
, pp.
29
35
.
28.
Arulrajah
,
A.
,
Ali
,
M. M. Y.
,
Piratheepan
,
J.
, and
Bo
,
M. W.
, “
Geotechnical Properties of Waste Excavation Rock in Pavement Sub-Base Applications
,”
J. Mater. Civil Eng.
, Vol.
24
(
7
),
2012
, pp.
924
932
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000419
29.
Arulrajah
,
A.
,
Ali
,
M. M. Y.
,
Disfani
,
M. M.
,
Piratheepan
,
J.
, and
Bo
,
M. W.
, “
Geotechnical Performance of Recycled Glass–Waste Rock Blends in Footpath Bases
,”
J. Mater. Civil Eng.
,
2012
, doi: https://doi.org/10.1061/(ASCE)MT. 1943-5533.0000617.
30.
Disfani
,
M. M.
,
Arulrajah
,
A.
,
Bo
,
M. W.
, and
Hankour
,
R.
, “
Recycled Crushed Glass in Road Work Applications
,”
Waste Manage.
, Vol.
31
(
11
),
2011
, pp.
2341
2351
. https://doi.org/10.1016/j.wasman.2011.07.003
31.
Disfani
,
M. M.
,
Arulrajah
,
A.
,
Ali
,
M. M. Y.
, and
Bo
,
M. W.
, “
Fine Recycled Glass: A Sustainable Alternative to Natural Aggregate
,”
Int. J. Geotech. Eng.
, Vol.
5
(
3
),
2011
, pp.
255
266
. https://doi.org/10.3328/IJGE.2011.05.03.255-266
32.
Disfani
,
M. M.
,
Arulrajah
,
A.
,
Suthagaran
,
V.
, and
Bo
,
M. W.
, “
Shear Strength Behavior of Recycled Glass-Biosolids Mixtures
,”
Proceedings of 62nd Canadian Geotechnical Conference
,
Halifax
,
Canada
, Sept 20–24,
2009
, pp.
812
819
.
33.
AS 1289.5.2.1
,
2003
, “
Soil Compaction and Density Tests—Determination of the Dry Density/Moisture Content Relation of a Soil Using Modified Compactive Effort
,”
Australian Standard
,
Sydney, Australia
.
34.
ASTM D1557
,
2009
, “
Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3(2,700 kN-m/m3))
,”
Annual Book of ASTM Standards
, Vol.
04.08
,
ASTM International
,
West Conshohocken, PA
.
35.
ASTM D3080
,
2011
, “
Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions
,”
Annual Book of ASTM Standards
, Vol.
04.08
,
ASTM International
,
West Conshohocken, PA
.
36.
Sivakugan
,
N.
,
Arulrajah
,
A.
, and
Bo
,
M. W.
,
Laboratory Testing of Soils, Rocks and Aggregates
, 1st ed.,
J. Ross Publishing
,
Fort Lauderdale, FL
,
2011
.
This content is only available via PDF.
You do not currently have access to this content.