Abstract

The following paper presents the results of an experimental investigation of the shear strength of full-scale reinforced concrete beams constructed with both high-volume fly ash concrete (HVFAC)—concrete with at least 50 % of the cement replaced with fly ash—and conventional concrete (CC). This study includes two HVFAC mixes and one CC mix. The two HVFAC mixes are identical except for the amount of Class C fly ash replacement of cement, with one mix replacing 50 % of the cement with fly ash and the other replacing 70 %. The test matrix included 18 beams—six for each concrete type—with three different longitudinal reinforcement ratios. The test results were compared to the shear provisions of both U.S. and international design codes, including the design provisions from Australia, Canada, Europe, and Japan. Furthermore, the shear strengths of the beams were evaluated based on fracture mechanics approaches, modified compression field theory (MCFT), and a shear database of CC specimens. Results of this study show that the HVFAC mixes possess comparable shear strength with the CC.

References

1.
USGS
, “
Minerals Yearbook, Cement, U.S. Geological Survey
,”
United States Department of the Interior
,
Washington, D.C.,
2012
, pp.
38
39
.
2.
Marland
,
G.
,
Boden
,
T. A.
, and
Andres
,
R. J.
,
2008
, “
Global, Regional, and National Fossil Fuel CO2 Emissions. In Trends: A Compendium of Data on Global Change
,”
Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, United States Department of Energy
,
Oak Ridge, TN
, http://cdiac.ornl.gov/trends/emis/overview.html (Last accessed March
2012
).
3.
Hanle
,
L.
,
Jayaraman
,
K.
, and
Smith
,
J.
,
2012
, “
CO2 Emissions Profile of the U.S. Cement Industry
,” http://infohouse.p2ric.org/ref/43/42552.pdf (Last accessed March
2012
).
4.
Bilodeau
,
A.
and
Malhotra
,
V. M.
, “
High-Volume Fly Ash System: Concrete Solution for Sustainable Development
,”
ACI Mater. J.
, Vol.
97
,
2000
, pp.
41
48
.
5.
ASTM 618-94a
,
1995
, “
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete
,”
Annual Book of ASTM Standards
, Vol.
04.02
,
ASTM International
,
West Conshohocken, PA
, pp.
304
306
.
6.
Davis
,
R. E.
,
Carlson
,
R. W.
,
Kelly
,
J. W.
, and
Davis
,
A. G.
, “
Properties of Cements and Concretes Containing Fly Ash
,”
ACI 33.577-612
,
American Concrete Institute
,
Farmington, MI
,
1937
.
7.
ACI Committee 232
, “
Use of Fly Ash in Concrete
,”
ACI 232.2R-03
,
American Concrete Institute
,
Farmington Hills, MI
,
2003
.
8.
Dunstan
,
E.
, “
Fly Ash and Fly Ash Concrete
,” Report No. REC-ERC-82-1,
Bureau of Reclamation
, Denver, CO,
1984
, 42 pp.
9.
Dunstan
,
E. R.
, Jr.
, “
Performance of Lignite and Sub-Bituminous Fly Ash in Concrete
,” Report No. REC-ERC-76,
U.S. Bureau of Reclamation
, Denver, CO,
1976
, 23 pp.
10.
Dunstan
,
E. R.
, Jr.
, “
A Possible Method for Identifying Fly Ashes that Will Improve the Sulfate Resistance of Concretes
,”
Cement, Concrete, Aggregates
, Vol.
2
, No.
1
,
1980
, pp.
20
30
. https://doi.org/10.1520/CCA10175J
11.
Dunstan
,
M. R. H.
, “
Rolled Concrete for Dams—A Laboratory Study of High Fly Ash Concrete
,”
Technical Note No. 105
,
Construction Industry Research and Information Association
,
London
,
1981
, 96 pp.
12.
Dunstan
,
M. R. H.
, “
Rolled Concrete for Dams—Construction Trials Using High Fly Ash Content Concrete
,”
Technical Note No. 106
,
Construction Industry Research and Information Association
,
London
,
1981
, 94 pp.
13.
Berry
,
E. E.
,
Hemmings
,
R. T.
,
Zhang
,
M. H.
,
Cornelious
,
B. J.
, and
Golden
,
D. M.
, “
Hydration in High-Volume Fly Ash Binders
,”
ACI Mater. J.
, Vol.
91
,
1994
, pp.
382
389
.
14.
ACI Committee 211
, “
Guide for Selecting Proportions for High-Strength Concrete With Portland Cement and Fly Ash
,
ACI Mater. J.
, Vol.
90
,
1993
, pp.
272
283
.
15.
Myers
,
J. J.
and
Carrasquillo
,
R. L.
, “
Mix Proportioning for High-Strength HPC Bridge Beams
,”
American Concrete Institute Special Publication 189
,
American Concrete Institute
,
Detroit, MI
,
1999
, pp.
37
56
.
16.
Poon
,
C. S.
,
Lam
,
L.
, and
Wong
,
Y. L.
, “
A Study on High Strength Concrete Prepared With Large Volumes of Low Calcium Fly Ash
,”
Cement Concrete Res.
, Vol.
30
, No.
3
,
2000
, pp.
447
455
. https://doi.org/10.1016/S0008-8846(99)00271-9
17.
Li
,
G.
, “
Properties of High-Volume Fly Ash Concrete Incorporating Nano-SiO
,”
Cement Concrete Res.
, Vol.
34
, No.
6
,
2004
, pp.
1043
1049
. https://doi.org/10.1016/j.cemconres.2003.11.013
18.
Malhotra
,
V. M.
, “
Superplasticized Fly Ash Concrete for Structural Applications
,”
Concrete Int.
, Vol.
8
,
1986
, pp.
28
31
.
19.
Li
,
S.
,
Roy
,
D. M.
, and
Kumer
,
A.
, “
Quantitative Determination of Pozzolanas in Hydrated System of Cement or Ca(OH)2 With Fly Ash or Silica Fume
,”
Cement Concrete Res.
, Vol.
15
,
1985
, pp.
1079
1086
. https://doi.org/10.1016/0008-8846(85)90100-0
20.
Gopalan
,
M. K.
, “
Nucleation and Pozzolanic Factors in Strength Development of Class F Fly Ash Concrete
,”
ACI Mater. J.
, Vol.
90
,
1993
, pp.
117
121
.
21.
Cross
,
D.
,
Stephens
,
J.
, and
Vollmer
,
J.
, “
Structural Applications of 100 Percent Fly Ash Concrete
,”
Proceedings of the 2005 World of Coal Ash Conference
,
Lexington, KY
, April 11–15,
2005
, pp.
11
15
.
22.
ACI 318-11
,
2011
, “
Building Code Requirements for Structural Concrete ACI 318-11 and Commentary 318R-11
,”
American Concrete Institute
,
Farmington Hills, MI
, pp.
155
168
.
23.
Koyama
,
T.
,
Sun
,
Y. P.
,
Fujinaga
,
T.
,
Koyamada
,
H.
, and
Ogata
,
F.
,
2008
, “
Mechanical Properties of Concrete Beam Made of a Large Amount of Fine Fly Ash
,”
Proceedings for the 14th World Conference on Earthquake Engineering
, http://www.iitk.ac.in/nicee/wcee/article/14_05-03-0040.PDF (Last accessed March
2012
).
24.
Rao
,
R. M.
,
Mohan
,
S.
, and
Sekar
,
S. K.
, “
Shear Resistance of High Volume Fly Ash Reinforced Concrete Beams Without Web Reinforcement
,”
Int. J. Civil Struct. Eng.
, Vol.
1
, No.
4
,
2011
, pp.
986
993
.
25.
ASTM A615/A615M
:
2009
, “
Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
, 6 pp.
26.
Bentz
,
D. P.
, “
Powder Additions to Mitigate Retardation in High-Volume Fly Ash Mixtures
,”
ACI Mater. J.
, Vol.
107
, No.
5
,
2010
, pp.
508
514
.
27.
ASTM C39/C39M
:
2012
, “
Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
, 7 pp.
28.
ASTM C496/C496M
:
2011
, “
Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
, 5 pp.
29.
ASTM C78/C78M
:
2010
, “
Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Third-Point Loading
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
, 4 pp.
30.
Taylor
,
H. P. J.
, “
Investigation of the Forces Carried Across Cracks in Reinforced Concrete Beams in Shear by Interlock of Aggregate
,” Technical Report 42.447,
Cement and Concrete Association
, London,
1970
.
31.
AASHTO
,
2010
,
AASHTO LRFD Bridge Design Specifications
, 4th ed.,
American Association of State and Highway Transportation Officials
,
Washington, D.C.
, pp.
572
584
.
32.
AS 3600-2009
,
2009
, “
Concrete Structures
,”
Standards
Australia, Sydney
, pp.
105
109
.
33.
CSA CAN3-A23.3-2004
,
2004
, “
Design of Concrete Standards for Buildings
,”
CSA Group
,
Rexdale, Ontario
, pp.
53
61
.
34.
Eurocode No. 2
,
2005
, “
Design of Concrete Structures. Part 1: General Rules and Rules for Buildings
,”
European Committee for Standardization
,
Brussels, Belgium
, pp.
84
92
.
35.
JSCE No. 15
, “
Standard Specification for Concrete Structure
,”
Japanese Society of Civil Engineering
,
Tokyo, Japan
,
2007
, pp.
154
159
.
36.
Reineck
,
K. H.
,
Kuchma
,
D. A.
,
Kim
,
K. S.
, and
Marx
,
S.
, “
Shear Database for Reinforced Concrete Members Without Shear Reinforcement
,”
ACI Struct. J.
, Vol.
100
, No.
2
,
2003
, pp.
240
249
.
37.
Bažant
,
Z. P.
, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
J. Eng. Mech.
, Vol.
110
,
1984
, pp.
518
535
. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)
38.
Bažant
,
Z. P.
and
Kim
,
J. K.
, “
Size Effect in Shear Failure of Longitudinal Reinforced Beams
,”
ACI J.
, Vol.
81
, No.
5
,
1984
, pp.
456
468
.
39.
Bažant
,
Z. P.
, “
Fracture Energy of Heterogeneous Materials and Similitude
,”
Fracture of Concrete and Rock
,
Shah
S. P.
and
Swartz
S. E.
, Eds.,
Springer
,
New York, NY
,
1987
, pp.
390
402
.
40.
Bažant
,
Z. P.
and
Yu
,
Q.
, “
Design Against Size Effect on Shear Strength of Reinforced Concrete Beams Without Stirrups
,”
J. Struct. Eng.
, Vol.
131
, No.
12
,
2005
, pp.
1877
1885
. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1877)
41.
Gustafsson
,
P. J.
, and
Hillerborg
,
A.
, “
Sensitivity in Shear Strength of Longitudinally Reinforced Concrete Beams
,”
ACI Struct. J.
, Vol.
85
, No.
3
,
1988
, pp.
286
294
.
42.
Jenq
,
Y. S.
and
Shah
,
S. P.
, “
Shear Resistance of Reinforced Concrete Beams—A Fracture Mechanics Approach
,”
Fracture Mechanics: Application to Concrete, SP-118
,
Li
V.
and
Bažant
Z. P.
, Eds.,
American Concrete Institute
,
Farmington Hills, MI
,
1989
, pp.
237
258
.
43.
Kim
,
W.
and
White
,
R. N.
, “
Initiation of Shear Cracking in Reinforced Concrete Beams With No Web Reinforcements
,”
ACI Struct. J.
, Vol.
88
, No.
3
,
1991
, pp.
301
308
.
44.
So
,
K. O.
and
Karihaloo
,
B. L.
, “
Shear Capacity of Longitudinally Reinforced Beams—A Fracture Mechanics Approach
,”
ACI Struct. J.
, Vol.
90
, No.
6
,
1993
, pp.
591
600
.
45.
Gastebled
,
O. J.
and
May
,
I. M.
, “
Fracture Mechanics Model Applied to Shear Failure of Reinforced Concrete Beams Without Stirrups
,”
ACI Struct. J.
, Vol.
98
, No.
2
,
2001
, pp.
184
190
.
46.
Xu
,
S.
,
Zhang
,
X.
, and
Reinhardt
,
H. S. W.
, “
Shear Capacity Prediction of Reinforced Concrete Beams Without Stirrups Using Fracture Mechanics Approach
,”
ACI Struct. J.
, Vol.
109
, No.
5
,
2012
, pp.
705
714
.
47.
Vecchio
,
F. J.
and
Collin
,
M. P.
, “
The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear
,”
ACI Struct. J.
, Vol.
83
, No.
2
,
1986
, pp.
219
223
.
48.
Bentz
,
E. C.
,
2000
, “
Sectional Analysis of Reinforced Concrete Members
,” Ph.D. thesis,
University of Toronto
, Toronto, Canada.
This content is only available via PDF.
You do not currently have access to this content.