Abstract

The interface shear strength properties of geogrid-reinforced recycled construction and demolition (C&D) materials were determined in this research to assess the viability of using geogrid-reinforced C&D materials as alternative construction materials. The C&D materials investigated were recycled concrete aggregate (RCA), crushed brick (CB), and reclaimed asphalt pavement (RAP). Biaxial and triaxial geogrids were tested as the geogrid-reinforcement materials. The interface shear strength properties of the C&D materials were ascertained by using a large direct shear test (DST) equipment. Large-scale DST was conducted for unreinforced and geogrid-reinforced C&D materials. The interface peak and residual shear strength property of unreinforced and geogrid-reinforced RCA was found to be higher than that of CB and RAP. RAP was found to have the lowest interface shear strength properties of the C&D materials. The higher strength triaxial geogrids were found to attain higher interface shear strength properties than that of the lower strength biaxial geogrids. The DST results, however, indicated that the interface shear strength properties of the geogrid-reinforced C&D materials were less than that of the respective material without reinforcement. This can be attributed to the lack of interlock between the geogrids and the recycled C&D aggregates, as well as the current conventional testing method for DST that induces a shear plane at the boundary between the lower and upper boxes where the geogrid is placed. The unreinforced and geogrid-reinforced RCA, CB, and RAP were found to meet the peak and residual shear strength requirements for typical construction materials in civil engineering applications.

References

1.
Aatheesan
,
T.
,
Arulrajah
,
A.
,
Bo
,
M. W.
,
Vuong
,
B.
, and
Wilson
,
J.
, “
Crushed Brick Blends With Crushed Rock for Pavement Systems
,”
Proc. ICE - Waste Res. Manag.
, Vol.
163
(
1
),
2010
, pp.
29
35
. https://doi.org/10.1680/warm.2010.163.1.29
2.
Hoyos
,
L. R.
,
Puppala
,
A. J.
, and
Ordonez
,
C. A.
, “
Characterization of Cement Fiber-Treated Reclaimed Asphalt Pavement Aggregates: Preliminary Investigation
,”
J. Mater. Civil Eng.
, Vol.
23
(
7
),
2011
, pp.
977
989
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000267
3.
Arulrajah
,
A.
,
Piratheepan
,
J.
,
Disfani
,
M. M.
, and
Bo
,
M. W.
, “
Geotechnical and Geoenvironmental Properties of Recycled Construction and Demolition Materials in Pavement Subbase Applications
,” J. Mater. Civil Eng.,
2013
(to be published).
4.
Poon
,
C. S.
and
Chan
,
D.
, “
Paving Blocks Made With Recycled Concrete Aggregate and Crushed Clay Brick
,”
Constr. Build. Mater.
, Vol.
20
,
2006
, pp.
569
577
. https://doi.org/10.1016/j.conbuildmat.2005.01.044
5.
Poon
,
C. S.
and
Chan
,
D.
, “
Feasible Use of Recycled Concrete Aggregates and Crushed Clay Brick as Unbound Rd. Sub-Base
,”
Constr. Build. Mater.
, Vol.
20
,
2006
, pp.
578
585
. https://doi.org/10.1016/j.conbuildmat.2005.01.045
6.
Azam
,
A. M.
and
Cameron
,
D. A.
, “
Geotechnical Properties of Blends of Recycled Clay Masonry and Recycled Concrete Aggregates in Unbound Pavement Construction
,” J. Mater. Civil Eng.,
2012
(to be published).
7.
Arulrajah
,
A.
,
Piratheepan
,
J.
,
Ali
,
M. M. Y.
, and
Bo
,
M. W.
, “
Geotechnical Properties of Recycled Concrete Aggregate in Pavement Sub-Base Applications
,”
ASTM Geotech. Test. J.
, Vol.
35
(
5
),
2012
, pp.
1
9
.
8.
Gabr
,
A.
and
Cameron
,
D.
, “
Properties of Recycled Concrete Aggregate for Unbound Pavement Construction
,”
J. Mater. Civil Eng.
, Vol.
24
(
6
),
2012
, pp.
754
764
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000447
9.
Arulrajah
,
A.
,
Piratheepan
,
J.
,
Aatheesan
,
T.
, and
Bo
,
M. W.
, “
Geotechnical Properties of Recycled Crushed Brick in Pavement Applications
,”
J. Mater. Civil Eng.
, Vol.
23
(
10
),
2011
, pp.
1444
1542
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000319
10.
Arulrajah
,
A.
,
Piratheepan
,
J.
,
Bo
,
M. W.
, and
Sivakugan
,
N.
, “
Geotechnical Characteristics of Recycled Crushed Brick Blends for Pavement Sub-Base Applications
,”
Can. Geotech. J.
, Vol.
49
(
7
),
2012
, pp.
796
811
. https://doi.org/10.1139/t2012-041
11.
Taha
,
R.
,
Al-Harthy
,
A.
,
Al-Shamsi
,
K.
, and
Al-Zubeidi
,
M.
, “
Cement Stabilization of Reclaimed Asphalt Pavement Aggregate for Road Bases and Subbases
,”
J. Mater. Civil Eng.
, Vol.
14
(
3
),
2002
, pp.
239
245
. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:3(239)
12.
Puppala
,
A. J.
,
Hoyos
,
L. R.
, and
Potturi
,
A. K.
, “
Resilient Moduli Response of Moderately Cement-Treated Reclaimed Asphalt Pavement Aggregates
,”
J. Mater. Civil Eng.
, Vol.
23
(
7
),
2011
, pp.
990
998
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000268
13.
Arulrajah
,
A.
,
Piratheepan
,
J.
,
Disfani
,
M. M.
, and
Bo
,
M. W.
, “
Resilient Moduli Response of Recycled Construction and Demolition Materials in Pavement Subbase Applications
,” J. Mater. Civil Eng.,
2013
(to be published).
14.
Piratheepan
,
J.
,
Arulrajah
,
A.
, and
Disfani
,
M. W.
, “
Large Scale Direct Shear Testing of Recycled Construction and Demolition Materials
,”
Adv. Civil Eng. Mater.
, Vol.
2
(
1
),
2013
, Paper No. ACEM20120009.
15.
Disfani
,
M. M.
,
Arulrajah
,
A.
,
Bo
,
M. W.
, and
Hankour
,
R.
, “
Recycled Crushed Glass in Rd. Work Applications
,”
Waste Manage.
, Vol.
31
(
11
),
2011
, pp.
2341
2351
. https://doi.org/10.1016/j.wasman.2011.07.003
16.
Ali
,
M. M. Y.
,
Arulrajah
,
A.
,
Disfani
,
M. M.
, and
Piratheepan
,
J.
, “
Suitability of Using Recycled Glass–Crushed Rock Blends for Pavement Subbase Applications
,”
Conference on Geotechnical and Foundation Design, American Society of Civil Engineers
,
Dallas, TX
, March 13–16,
2011
, pp.
1325
1334
.
17.
Disfani
,
M. M.
,
Arulrajah
,
A.
,
Bo
,
M. W.
, and
Sivakugan
,
N.
, “
Environmental Risks of Using Recycled Crushed Glass in Rd. Applications
,”
J. Cleaner Product.
, Vol.
20
(
1
), pp.
170
179
. https://doi.org/10.1016/j.jclepro.2011.07.020
18.
Imteaz
,
M. A.
,
Ali
,
M. M. Y.
, and
Arulrajah
,
A.
, “
Possible Environmental Impacts of Recycled Glass Used as a Pavement Base Material
,”
Waste Manage. Res.
, Vol.
30
(
9
),
2012
, pp.
917
921
. https://doi.org/10.1177/0734242X12448512
19.
Arulrajah
,
A.
,
Ali
,
M. M. Y.
,
Disfani
,
M. M.
,
Piratheepan
,
J.
, and
Bo
,
M. W.
, “
Geotechnical Performance of Recycled Glass-Waste Rock Blends in Footpath Bases
,” J. Mater. Civil Eng.,
2013
(to be published).
20.
Kazimierowicz
,
F. K.
, “
Influence of Geosynthetic Reinforcement on the Load-Settlement Characteristics of Two-Layer Subgrade
,”
Geotext. Geomembr.
, Vol.
25
(
6
), pp.
366
376
. https://doi.org/10.1016/j.geotexmem.2007.01.002
21.
Arulrajah
,
A.
,
Ali
,
M. M. Y.
,
Piratheepan
,
J.
, and
Bo
,
M. W.
, “
Geotechnical Properties of Waste Excavation Rock in Pavement Subbase Applications
,”
J. Mater. Civil Eng.
, Vol.
24
(
7
),
2012
, pp.
924
932
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000419
22.
Araujo
,
G. L. S.
,
Palmeira
,
E. M.
, and
Cunha
,
R. P.
, “
Behaviour of Geosynthetic-Encased Granular Columns in Porous Collapsible Soil
,”
Geosynth. Int.
, Vol.
16
(
6
),
2009
, pp.
433
451
. https://doi.org/10.1680/gein.2009.16.6.433
23.
Liu
,
C. N.
,
Zornberg
,
J. G.
,
Chen
,
T. C.
,
Ho
,
Y. H.
, and
Lin
,
B. H.
, “
Behavior of Geogrid–Sand Interface in Direct Shear Mode
,”
J. Geotech. Geoenviron. Eng.
, Vol.
135
(
12
),
2009
, pp.
1863
1871
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000150
24.
Liu
,
C. N.
,
Ho
,
Y. H.
, and
Huang
,
J. W.
, “
Large-Scale Direct Shear Tests of Soil/Pet-Yarn Geogrid Interfaces
,”
Geotext. Geomembr.
, Vol.
27
(
1
),
2009
, pp.
19
30
. https://doi.org/10.1016/j.geotexmem.2008.03.002
25.
Rowe
,
R. K.
and
Taechakumthorn
,
C.
, “
Design of Reinforced Embankments on Soft Clay Deposits Considering the Viscosity of Both Foundation and Reinforcement
,”
Geotext. Geomembr.
, Vol.
29
(
5
),
2011
, pp.
448
461
. https://doi.org/10.1016/j.geotexmem.2011.03.001
26.
Palmeira
,
E. M.
,
Beirigo
,
E. A.
, and
Gardoni
,
M. G.
, “
Tailings-Nonwoven Geotextile Filter Compatibility in Mining Applications
,”
Geotext. Geomembr.
, Vol.
28
(
2
),
2010
, pp.
136
148
. https://doi.org/10.1016/j.geotexmem.2009.10.004
27.
Zekkos
,
D.
,
Athanasopoulos
,
G. A.
,
Bray
,
J. D.
,
Grizi
,
A.
, and
Theodoratos
,
A.
, “
Large-Scale Direct Shear Testing of Municipal Solid Waste
,”
Waste Manage.
, Vol.
30
(
8–9
),
2010
, pp.
1544
1555
. https://doi.org/10.1016/j.wasman.2010.01.024
28.
Abu-Farsakh
,
M.
,
Coronel
,
J.
, and
Tao
,
M.
, “
Effect of Soil Moisture Content and Dry Density on Cohesive Soil–Geosynthetic Interactions Using Large Direct Shear Tests
,”
J. Mater. Civil Eng.
, Vol.
19
(
7
),
2007
, pp.
540
549
. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:7(540)
29.
Ling
,
H. I.
,
Wang
,
J. P.
, and
Leshchinsky
,
D.
, “
Cyclic Behaviour of Soil–Structure Interfaces Associated With Modular-Block Reinforced Soil-Retaining Walls
,”
Geosynth. Int.
, Vol.
15
(
1
),
2008
, pp.
14
21
. https://doi.org/10.1680/gein.2008.15.1.14
30.
McCartney
,
J. S.
,
Zornberg
,
J. G.
, and
Swan
,
R. H.
, Jr.
, “
Analysis of a Large Database of GCL-Geomembrane Interface Shear Strength Results
,”
J. Geotech. Geoenviron. Eng.
, Vol.
135
(
2
),
2009
, pp.
209
223
. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:2(209)
31.
ASTM-D1557:
Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2009
.
32.
ASTM-D422-63:
Standard Test Method for Particle-Size Analysis of Soils
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2007
.
33.
ASTM-D1883-07:
Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2007
.
34.
ASTM-D2974:
Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2007
.
35.
AS1141.5,
2000
, “
Particle Density and Water Absorption of Fine Aggregate
,”
Standards Association of Australia
,
Sydney, Australia
.
36.
AS1141.6.1,
2000
, “
Particle Density and Water Absorption of Coarse Aggregate Weighing-in-Water Method
,”
Standards Association of Australia
,
Sydney, Australia
.
37.
BS812-105.1,
2000
, “
Method for Determination of Particle Shape; Flakiness Index
,”
British Standard Institution
,
London
.
38.
ASTM-C131:
Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2006
.
39.
ASTM-D5321:
Standard Test Method for Determining the Coefficient of Soil and Geosynthetic or Geosynthetic and Geosynthetic Friction by the Direct Shear Method
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2008
.
40.
Lee
,
K. M.
and
Manjunath
,
V. R.
, “
Soil–Geotextile Interface Friction by Direct Shear Tests
,”
Can. Geotech. J.
, Vol.
37
,
2000
, pp.
238
252
. https://doi.org/10.1139/t99-124
41.
Sivakugan
,
N.
and
Das
,
B. M.
,
Geotechnical Engineering: A Practical Problem-Solving Approach
,
J. Ross
,
Fort Lauderdale, FL
,
2000
.
42.
Kautsourais
,
M. M.
,
Sprague
,
C. J.
, and
Pucetas
,
R. C.
, “
Interfacial Friction Study of Cap and Liner Components for Landfill Design
,”
Geotext. Geomembr.
, Vol.
10
,
1991
, pp.
531
548
. https://doi.org/10.1016/0266-1144(91)90045-X
43.
AS1141.11,
2009
, “
Method for Sampling and Testing Aggregates-Particle Size Distribution by Sieving
,”
Standards Association of Australia
,
Sydney, Australia
.
This content is only available via PDF.
You do not currently have access to this content.