ABSTRACT

The prohibition of river sand mining has drawn the attention of researchers in finding practicable alternatives. In the approach of finding these alternatives, it is essential to ensure minimal or zero impairment to the ecological balance, which can be mainly attained by making use of industrial waste/byproducts. The wastes from the mining industry are the major contributors in causing impairment to the environment, and their influence on the stability of mortars on using as fine aggregates needs to be systematically investigated with the view of long-term performance concerns. Thus, the present study explores the applicability of mine tailings and finding the optimum dosage in cement mortars by investigating the engineering properties and microstructure development with the aid of qualitative and quantitative analysis associated with hydration products. The studies confirm that the increased consumption of portlandite for secondary hydration reactions followed by the additional formation of calcium silicate hydrate (CSH) and calcium aluminum silicate hydrate (CASH) phases in mine tailing-based mortars helped in achieving a quality microstructure. These additional formations of CSH and CASH phases are also confirmed through Fourier transform infrared spectroscopy by identifying the shift of Si-O-Si stretching vibration bands toward a lower wavenumber. The lowering of calcium/silicate atomic ratio and increased formation of mineralogical compounds related to CSH and CASH in x-ray diffraction patterns also confirms the same. Gismondine, chabazite, and hillebrandite are the additional phases formed and found to take part in refining the pore structure. This enhanced performance of mine tailing mortars was also verified with the aid of a modified Andreasen and Andersen particle packing model. The formation of high-quality microstructure is reflected in the hardened properties of optimized cement mortar in the proportion of 20 % for iron ore tailing and 30 % for copper ore tailing.

References

1.
J. R.
 
Owen
,
D.
 
Kemp
,
É.
 
Lèbre
,
K.
 
Svobodova
, and
G.
 
Pérez Murillo
, “
Catastrophic Tailings Dam Failures and Disaster Risk Disclosure
,”
International Journal of Disaster Risk Reduction
42
(January
2020
):
101361
,
2.
F. F.
 
Carmo
,
A. O.
 
Lanchotti
, and
L. H. Y.
 
Kamino
, “
Mining Waste Challenges: Environmental Risks of Gigatons of Mud, Dust and Sediment in Megadiverse Regions in Brazil
,”
Sustainability
12
, no. 
20
(October
2020
):
8466
,
3.
W.
 
Pytel
, “
Risk Assessment of Mine Tailings/Waste Surface Ponds
,” in
Mine Waste 2010: Proceedings of the First International Seminar on the Reduction of Risk in the Management of Tailings and Mine Waste
(
Perth, Australia
:
Australian Centre for Geomechanics
,
2010
),
229
242
, https://doi.org/10.36487/ACG_rep/1008_20_Pytel
4.
Z.
 
Różański
, “
Fire Hazard in Coal Waste Dumps–Selected Aspects of the Environmental Impact
,”
IOP Conference Series: Earth and Environmental Science
174
(
2018
):
012013
,
5.
C.
 
Cacciuttolo
,
D.
 
Cano
, and
M.
 
Custodio
, “
Socio-environmental Risks Linked with Mine Tailings Chemical Composition: Promoting Responsible and Safe Mine Tailings Management Considering Copper and Gold Mining Experiences from Chile and Peru
,”
Toxics
11
, no. 
5
(May
2023
):
462
,
6.
D. P.
 
Mohapatra
and
D. M.
 
Kirpalani
, “
Process Effluents and Mine Tailings: Sources, Effects and Management and Role of Nanotechnology
,”
Nanotechnology for Environmental Engineering
2
, no. 
1
(December
2016
):
1
,
7.
C.
 
Falagán
,
B. M.
 
Grail
, and
D. B.
 
Johnson
, “
New Approaches for Extracting and Recovering Metals from Mine Tailings
,”
Minerals Engineering
106
(May
2017
):
71
78
,
8.
H. R.
 
Watling
, “
Review of Biohydrometallurgical Metals Extraction from Polymetallic Mineral Resources
,”
Minerals
5
, no. 
1
(March
2015
):
1
60
,
9.
Ministry of Mines
, “
Report of the Working Group on Mineral Exploration & Development (Other than Coal and Lignite) for the Twelfth Five Year Plan
,” India Environmental Portal,
2011
, https://perma.cc/4N5J-GZBH
10.
Indian Bureau of Mines
, “
Part-I: General Reviews
,” in
Indian Mineral Yearbook 2022
(
Nagpur, India
:
Ministry of Mines-Government of India
,
2023
),
1
35
, https://ibm.gov.in/IBMPortal/pages/indian-minerals-yearbook--2022-vol--i--general-reviews-
11.
C.
 
Sudha
,
A. K.
 
Kottuppillil
,
P. T.
 
Ravichandran
, and
K.
 
Divya Krishnan
, “
Study on Mechanical Properties of Concrete with Manufactured Sand and Bagasse Ash
,”
Indian Journal of Science and Technology
9
, no. 
34
(
2016
):
1
5
,
12.
M.
 
Pilegis
,
D.
 
Gardner
, and
R.
 
Lark
, “
An Investigation into the Use of Manufactured Sand as a 100% Replacement for Fine Aggregate in Concrete
,”
Materials
9
, no. 
6
(June
2016
):
440
,
13.
W. H.
 
Langer
and
B. F.
 
Arbogast
, “
Environmental Impacts of Mining Natural Aggregate
,” in
Deposit and Geoenvironmental Models for Resource Exploitation and Environmental Security
(
Dordrecht, the Netherlands
:
Springer
,
2002
),
151
169
, https://doi.org/10.1007/978-94-010-0303-2_8
14.
L. H.
 
Anh
,
F.-C.
 
Mihai
,
A.
 
Belousova
,
R.
 
Kucera
,
K.-D.
 
Oswald
,
W.
 
Riedel
,
N. A.
 
Sekar
, and
P.
 
Schneider
, “
Life Cycle Assessment of River Sand and Aggregates Alternatives in Concrete
,”
Materials
16
, no. 
5
(March
2023
):
2064
,
15.
F.
 
Muleya
,
B.
 
Mulenga
,
S. L.
 
Zulu
,
S.
 
Nwaubani
,
C. K.
 
Tembo
, and
H.
 
Mushota
, “
Investigating the Suitability and Cost-Benefit of Copper Tailings as Partial Replacement of Sand in Concrete in Zambia: An Exploratory Study
,”
Journal of Engineering, Design and Technology
19
, no. 
4
(June
2021
):
828
849
,
16.
A.
 
Bandopadhyay
,
R.
 
Kumar
, and
P.
 
Ramachandrarao
, eds.,
Clean Technologies for Metallurgical Industries (EWM-2002)
(
New Delhi, India
:
Allied Publishers
,
2002
).
17.
S.
 
Zhang
,
X.
 
Xue
,
X.
 
Liu
,
P.
 
Duan
,
H.
 
Yang
,
T.
 
Jiang
,
D.
 
Wang
, and
R.
 
Liu
, “
Current Situation and Comprehensive Utilization of Iron Ore Tailing Resources
,”
Journal of Mining Science
42
, no. 
4
(July
2006
):
403
408
,
18.
A.
 
Umara Shettima
,
Y.
 
Ahmad
,
M.
 
Warid Hussin
,
N.
 
Zakari Muhammad
, and
O.
 
Eziekel Babatude
, “
Strength and Microstructure of Concrete with Iron Ore Tailings as Replacement for River Sand
,”
E3S Web of Conferences
34
(
2018
):
1003
,
19.
A.
 
Umara Shettima
,
M.
 
Warid Hussin
,
Y.
 
Ahmad
, and
J.
 
Mirza
, “
Evaluation of Iron Ore Tailings as Replacement for Fine Aggregate in Concrete
,”
Construction and Building Materials
120
(September
2016
):
72
79
,
20.
S.
 
Oritola
,
A. L.
 
Saleh
, and
A. R.
 
Mohd Sam
, “
Performance of Iron Ore Tailings as Partial Replacement for Sand in Concrete
,”
Applied Mechanics and Materials
735
(
2015
):
122
127
,
21.
Z.-X.
 
Tian
,
Z.-H.
 
Zhao
,
C.-Q.
 
Dai
, and
S.-J.
 
Liu
, “
Experimental Study on the Properties of Concrete Mixed with Iron Ore Tailings
,”
Advances in Materials Science and Engineering
2016
(
2016
):
8606505
,
22.
Z.
 
Zhang
,
Z.
 
Zhang
,
S.
 
Yin
, and
L.
 
Yu
, “
Utilization of Iron Tailings Sand as an Environmentally Friendly Alternative to Natural River Sand in High-Strength Concrete: Shrinkage Characterization and Mitigation Strategies
,”
Materials
13
, no. 
24
(December
2020
):
5614
,
23.
R. C.
 
Gupta
,
P.
 
Mehra
, and
B. S.
 
Thomas
, “
Utilization of Copper Tailing in Developing Sustainable and Durable Concrete
,”
Journal of Materials in Civil Engineering
29
, no. 
5
(May
2017
):
04016274
,
24.
B. S.
 
Thomas
,
A.
 
Damare
, and
R. C.
 
Gupta
, “
Strength and Durability Characteristics of Copper Tailing Concrete
,”
Construction and Building Materials
48
(November
2013
):
894
900
,
25.
A. M.
 
Bhoi
,
Y. D.
 
Patil
,
H. S.
 
Patil
, and
M. P.
 
Kadam
, “
Feasibility Assessment of Incorporating Copper Slag as a Sand Substitute to Attain Sustainable Production Perspective in Concrete
,”
Advances in Materials Science and Engineering
2018
(
2018
):
6502890
, https://doi.org/10.1155/2018/6502890
26.
K. S.
 
Al-Jabri
,
M.
 
Hisada
,
A. H.
 
Al-Saidy
, and
S. K.
 
Al-Oraimi
, “
Performance of High Strength Concrete Made with Copper Slag as a Fine Aggregate
,”
Construction and Building Materials
23
, no. 
6
(June
2009
):
2132
2140
,
27.
Standard Specification for Portland Cement
, ASTM C150/C150M-22 (
West Conshohocken, PA
:
ASTM International
, approved July 1,
2022
), https://doi.org/10.1520/C0150_C0150M-22
28.
Drinking Water
, IS 10500 (
New Delhi, India
:
Bureau of Indian Standards
,
2012
), https://perma.cc/YPE2-Q7ZN
29.
Coarse and Fine Aggregate from Natural Sources for Concrete - Specification (Third Revision)
, IS 383 (
New Delhi, India
:
Bureau of Indian Standards
,
2016
), https://perma.cc/PTZ5-58DV
30.
Integral Waterproofing Compounds for Cement Mortar and Concrete - Specification
, IS 2645 (
New Delhi, India
:
Bureau of Indian Standards
,
2003
), https://perma.cc/J8F9-2ZQM
31.
Specification for Concrete Admixtures
, IS 9103 (
New Delhi, India
:
Bureau of Indian Standards
,
1999
), https://perma.cc/P4YY-U2K9
32.
X.
 
Tian
,
H.
 
Zhang
,
T.
 
Zhang
, and
C. A.
 
Fernández
, “
Alkali-Activated Copper Tailings-Based Pastes: Compressive Strength and Microstructural Characterization
,”
Journal of Materials Research and Technology
9
, no. 
3
(May–June
2020
):
6557
6567
,
33.
L.
 
Cui
,
L.
 
Wang
,
Y.
 
Xu
,
X.
 
Lou
, and
H.
 
Wang
, “
Feasibility Evaluation of Replacing River Sand with Copper Tailings
,”
Sustainability
13
, no. 
14
(July
2021
):
7575
,
34.
S.
 
Jain
, “
Green Geopolymers with Copper Tailings for Marine Environments
,”
Azo Materials
,
2022
, https://perma.cc/UB4K-5E5C
35.
Code of Practice for Preparation and Use of Masonry Mortars (First Revision)
, IS 2250 (
New Delhi, India
:
Bureau of Indian Standards
,
1981
), https://law.resource.org/pub/in/bis/S03/is.2250.1981.pdf
36.
Standard Specification for Mortar for Unit Masonry
(Superseded), ASTM C270-19a (
West Conshohocken, PA
:
ASTM International
, approved May 1,
2019
), https://doi.org/10.1520/C0270-19A
37.
Methods of Testing Cement-Determination of Strength
(Withdrawn), BS EN 196-1 (
London
:
British Standards Institution
,
1995
).
38.
Methods of Test for Mortar for Masonry – Determination of Consistence of Fresh Mortar (by Flow Table)
, BS EN 1015-3 (
London
:
British Standards Institution
,
1999
), https://doi.org/10.3403/01541440
39.
Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance
(Superseded), ASTM C403/C403M-08 (
West Conshohocken, PA
:
ASTM International
, approved April 1,
2008
), https://doi.org/10.1520/C0403_C0403M-08
40.
Methods of Physical Tests For Hydraulic Cement-Part 6: Determination of Compressive Strength of Hydraulic Cement Other Than Masonry Cement (First Revision)
, IS 4031-6 (
New Delhi, India
:
Bureau of Indian Standards
,
1988
), https://archive.org/details/gov.in.is.4031.6.1988/page/n5/mode/2up
41.
Methods of Test for Mortar for Masonry – Determination of Dry Bulk Density of Hardened Mortar
, BS EN 1015-10 (
London
:
British Standards Institution
,
1999
), https://doi.org/10.3403/01905430U
42.
M.
 
Safiuddin
and
N.
 
Hearn
, “
Comparison of ASTM Saturation Techniques for Measuring the Permeable Porosity of Concrete
,”
Cement and Concrete Research
35
, no. 
5
(May
2005
):
1008
1013
,
43.
B. B.
 
Das
,
D. N.
 
Singh
, and
S. P.
 
Pandey
, “
A Comparative Study for Determining Pore Volume of Concrete
,”
The Indian Concrete Journal
84
, no. 
12
(December
2010
):
7
12
, https://www.researchgate.net/publication/288071687_A_comparative_study_for_determining_pore_volume_of_concrete
44.
Standard Test Method for Dry and Wet Bulk Density, Water Absorption, and Apparent Porosity of Thin Sections of Glass-Fiber Reinforced Concrete
, ASTM C948-81(2023) (
West Conshohocken, PA
:
ASTM International
, approved May 1,
2023
), https://doi.org/10.1520/C0948-81R23
45.
K.
 
Snehal
,
B. B.
 
Das
, and
M.
 
Akanksha
, “
Early Age, Hydration, Mechanical and Microstructure Properties of Nano-Silica Blended Cementitious Composites
,”
Construction and Building Materials
233
(February
2020
):
117212
,
46.
J.
 
Zhang
and
G. W.
 
Scherer
, “
Comparison of Methods for Arresting Hydration of Cement
,”
Cement and Concrete Research
41
, no. 
10
(October
2011
):
1024
1036
,
47.
J. W.
 
Bullard
,
H. M.
 
Jennings
,
R. A.
 
Livingston
,
A.
 
Nonat
,
G. W.
 
Scherer
,
J. S.
 
Schweitzer
,
K. L.
 
Scrivener
, and
J. J.
 
Thomas
, “
Mechanisms of Cement Hydration
,”
Cement and Concrete Research
41
, no. 
12
(December
2011
):
1208
1223
,
48.
R.
 
Yu
,
P.
 
Spiesz
, and
H. J. H.
 
Brouwers
, “
Effect of Nano-Silica on the Hydration and Microstructure Development of Ultra-High Performance Concrete (UHPC) with a Low Binder Amount
,”
Construction and Building Materials
65
(August
2014
):
140
150
,
49.
L.
 
Soriano
,
J.
 
Monzó
,
M.
 
Bonilla
,
M. M.
 
Tashima
,
J.
 
Payá
, and
M. V.
 
Borrachero
, “
Effect of Pozzolans on the Hydration Process of Portland Cement Cured at Low Temperatures
,”
Cement and Concrete Composites
42
(September
2013
):
41
48
,
50.
L. P.
 
Singh
,
A.
 
Goel
,
S. K.
 
Bhattacharyya
,
U.
 
Sharma
, and
G.
 
Mishra
, “
Hydration Studies of Cementitious Material Using Silica Nanoparticles
,”
Journal of Advanced Concrete Technology
13
, no. 
7
(
2015
):
345
354
,
51.
K.
 
Snehal
and
B. B.
 
Das
, “
Acid, Alkali and Chloride Resistance of Binary, Ternary and Quaternary Blended Cementitious Mortar Integrated with Nano-Silica Particles
,”
Cement and Concrete Composites
123
(October
2021
):
104214
,
52.
K.
 
Snehal
and
B. B.
 
Das
, “
Pozzolanic Reactivity and Drying Shrinkage Characteristics of Optimized Blended Cementitious Composites Comprising of Nano-Silica Particles
,”
Construction and Building Materials
316
(January
2022
):
125796
,
53.
K.
 
Snehal
,
B. B.
 
Das
, and
S.
 
Barbhuiya
, “
Influence of Aggressive Exposure on the Degradation of Nano-Silica Admixed Cementitious Mortar Integrated with Phase Change Materials
,”
Construction and Building Materials
335
(June
2022
):
127467
,
54.
K.
 
Snehal
and
B. B.
 
Das
, “
Effect of Phase-Change Materials on the Hydration and Mineralogy of Cement Mortar
,”
Proceedings of the Institution of Civil Engineers-Construction Materials
176
, no. 
3
(May
2023
):
117
127
,
55.
D. R.
 
Dinger
and
J. E.
 
Funk
, “
Particle-Packing Phenomena and Their Application in Materials Processing
,”
MRS Bulletin
22
, no. 
12
(December
1997
):
19
23
,
56.
Elkem
, “
Elkem Materials Mixture Analyser (EMMA)
,” Elkem, https://perma.cc/WZH4-K4QN
57.
M.
 
Gou
,
L.
 
Zhou
, and
N. W. Y.
 
Then
, “
Utilization of Tailings in Cement and Concrete: A Review
,”
Science and Engineering of Composite Materials
26
, no. 
1
(
2019
):
449
464
,
58.
D.
 
Boakye
and
H.
 
Uzoegbo
, “
Assessment of Concrete with Pulverized Copper Slag as Partial Replacement of Cement
,”
Concrete Beton
, no. 
139
(November
2014
):
14
17
.
59.
M.
 
Yellishetty
,
V.
 
Karpe
,
E. H.
 
Reddy
,
K. N.
 
Subhash
, and
P. G.
 
Ranjith
, “
Reuse of Iron Ore Mineral Wastes in Civil Engineering Constructions: A Case Study
,”
Resources, Conservation and Recycling
52
, no. 
11
(September
2008
):
1283
1289
,
60.
J. R.
 
Conner
,
Chemical Fixation and Solidification of Hazardous Wastes
(
New York
:
Van Nostrand Reinhold
,
1990
), https://lccn.loc.gov/89016522
61.
F. S.
 
Hashem
,
M. S.
 
Amin
, and
E. E.
 
Hekal
, “
Stabilization of Cu (II) Wastes by C3S Hydrated Matrix
,”
Construction and Building Materials
25
, no. 
8
(August
2011
):
3278
3282
,
62.
M. F. M.
 
Zain
,
M. N.
 
Islam
,
S. S.
 
Radin
, and
S. G.
 
Yap
, “
Cement-Based Solidification for the Safe Disposal of Blasted Copper Slag
,”
Cement and Concrete Composites
26
, no. 
7
(October
2004
):
845
851
,
63.
H.
 
Zhang
,
S.
 
Mu
,
J.
 
Cai
,
J.
 
Liu
, and
J.
 
Hong
, “
The Role of Iron in Cement Hydration Process: From Perspective of Chemical Admixture
,”
Thermochimica Acta
722
(April
2023
):
179457
,
64.
M. A.
 
Largeau
,
R.
 
Mutuku
, and
J.
 
Thuo
, “
Effect of Iron Powder (Fe2O3) on Strength, Workability, and Porosity of the Binary Blended Concrete
,”
Open Journal of Civil Engineering
8
, no. 
4
(December
2018
):
411
425
,
65.
Y.
 
Yang
,
L.
 
Chen
,
X.
 
Sun
, and
Y.
 
Mao
, “
Preparation of Micro-iron Ore Tailings by Wet-Grinding and Its Application in Sulphoaluminate Cement
,”
Journal of Renewable Materials
10
, no. 
4
(
2022
):
1007
1023
,
66.
K.
 
Snehal
,
B. B.
 
Das
, and
S.
 
Barbhuiya
, “
Synergistic Effect of Nano Silica on Carbonation Resistance of Multi-blended Cementitious Mortar
,”
Cement and Concrete Composites
141
(August
2023
):
105125
,
67.
K.
 
Snehal
,
B. B.
 
Das
, and
S.
 
Kumar
, “
Influence of Integration of Phase Change Materials on Hydration and Microstructure Properties of Nanosilica Admixed Cementitious Mortar
,”
Journal of Materials in Civil Engineering
32
, no. 
6
(June
2020
):
04020108
,
68.
D.
 
Zhang
,
X.
 
Cai
, and
Y.
 
Shao
, “
Carbonation Curing of Precast Fly Ash Concrete
,”
Journal of Materials in Civil Engineering
28
, no. 
11
(November
2016
):
04016127
,
69.
V.
 
Corinaldesi
,
M.
 
Giuggiolini
, and
G.
 
Moriconi
, “
Use of Rubble from Building Demolition in Mortars
,”
Waste Management
22
, no. 
8
(December
2002
):
893
899
,
70.
Z.
 
Zhang
,
J.
 
Du
, and
M.
 
Shi
, “
Quantitative Analysis of the Calcium Hydroxide Content of EVA-Modified Cement Paste Based on TG-DSC in a Dual Atmosphere
,”
Materials
15
, no. 
7
(April
2022
):
2660
,
71.
G.
 
Kakali
,
S.
 
Tsivilis
,
K.
 
Kolovos
,
N.
 
Voglis
,
J.
 
Aivaliotis
,
T.
 
Perraki
,
E.
 
Passialakou
, and
M.
 
Stamatakis
, “
Use of Secondary Mineralizing Raw Materials in Cement Production. A Case Study of a Wolframite–Stibnite Ore
,”
Cement and Concrete Composites
27
, no. 
2
(February
2005
):
155
161
,
72.
E.
 
Kapeluszna
,
Ł.
 
Kotwica
, and
W.
 
Nocuń-Wczelik
, “
Comparison of the Effect of Ground Waste Expanded Perlite and Silica Fume on the Hydration of Cements with Various Tricalcium Aluminate Content – Comprehensive Analysis
,”
Construction and Building Materials
303
(October
2021
):
124434
,
73.
M.
 
Hu
,
X.
 
Zhu
, and
F.
 
Long
, “
Alkali-Activated Fly Ash-Based Geopolymers with Zeolite or Bentonite as Additives
,”
Cement and Concrete Composites
31
, no. 
10
(November
2009
):
762
768
,
74.
H.
 
Biricik
and
N.
 
Sarier
, “
Comparative Study of the Characteristics of Nano Silica-, Silica Fume-and Fly Ash-Incorporated Cement Mortars
,”
Materials Research
17
, no. 
3
(June
2014
):
570
582
,
75.
L.
 
Yu
,
Z.
 
Zhang
,
X.
 
Huang
,
B.
 
Jiao
, and
D.
 
Li
, “
Enhancement Experiment on Cementitious Activity of Copper-Mine Tailings in a Geopolymer System
,”
Fibers
5
, no. 
4
(December
2017
):
47
,
76.
S.
 
Ahmari
,
K.
 
Parameswaran
, and
L.
 
Zhang
, “
Alkali Activation of Copper Mine Tailings and Low-Calcium Flash-Furnace Copper Smelter Slag
,”
Journal of Materials in Civil Engineering
27
, no. 
6
(June
2015
):
04014193
,
77.
I. C.
 
Ferreira
,
R.
 
Galéry
,
A. B.
 
Henriques
,
A.
 
Paula de Carvalho Teixeira
,
C. D.
 
Prates
,
A. S.
 
Lima
, and
I. R.
 
Souza Filho
, “
Reuse of Iron Ore Tailings for Production of Metakaolin-Based Geopolymers
,”
Journal of Materials Research and Technology
18
(May–June
2022
):
4194
4200
,
78.
A.
 
Jagadisha
,
K. B.
 
Rao
,
G.
 
Nayak
, and
M.
 
Kamath
, “
Influence of Nano-Silica on the Microstructural and Mechanical Properties of High-Performance Concrete of Containing EAF Aggregate and Processed Quarry Dust
,”
Construction and Building Materials
304
(October
2021
):
124392
,
79.
A. Y.
 
Patil
,
N. R.
 
Banapurmath
,
E. P.
 
Sumukh
,
M. V.
 
Chitawadagi
,
T. M. Y.
 
Khan
,
I. A.
 
Badruddin
, and
S.
 
Kamangar
, “
Multi-scale Study on Mechanical Property and Strength of New Green Sand (Poly Lactic Acid) as Replacement of Fine Aggregate in Concrete Mix
,”
Symmetry
12
, no. 
11
(November
2020
):
1823
,
80.
P. E.
 
Stutzman
, “
Scanning Electron Microscopy in Concrete Petrography
,” in
Materials Science of Concrete, Special Volume: Calcium Hydroxide in Concrete
(
Hoboken, NJ
:
Wiley
,
2001
),
59
72
, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=860317
81.
W.
 
Liu
,
H.
 
Shi
,
X.
 
He
,
S.
 
Pan
,
Z.
 
Ye
, and
Y.
 
Wang
, “
An Application of Optimized Otsu Multi-threshold Segmentation Based on Fireworks Algorithm in Cement SEM Image
,”
Journal of Algorithms & Computational Technology
13
(January–December
2019
):
1748301818797025
,
82.
J.
 
Lu
,
S.
 
Ruan
,
Y.
 
Liu
,
T.
 
Wang
,
Q.
 
Zeng
, and
D.
 
Yan
, “
Morphological Characteristics of Calcium Carbonate Crystallization in CO2 Pre-cured Aerated Concrete
,”
RSC Advances
12
, no. 
23
(
2022
):
14610
14620
,
83.
D.
 
Zhao
,
J. M.
 
Williams
,
A.-H. A.
 
Park
, and
S.
 
Kawashima
, “
Rheology of Cement Pastes with Calcium Carbonate Polymorphs
,”
Cement and Concrete Research
172
(October
2023
):
107214
,
84.
Q.
 
Hu
,
M.
 
Aboustait
,
T.
 
Kim
,
M. T.
 
Ley
,
J. C.
 
Hanan
,
J.
 
Bullard
,
R.
 
Winarski
, and
V.
 
Rose
, “
Direct Three-Dimensional Observation of the Microstructure and Chemistry of C3S Hydration
,”
Cement and Concrete Research
88
(October
2016
):
157
169
,
85.
E. P.
 
Sumukh
,
S. K.
 
Goudar
, and
B. B.
 
Das
, “
Predicting the Service Life of Reinforced Concrete by Incorporating the Experimentally Determined Properties of Steel–Concrete Interface and Corrosion
,” in
Recent Trends in Civil Engineering
(
Singapore
:
Springer
,
2021
),
399
417
, https://doi.org/10.1007/978-981-15-8293-6_34
86.
E. P.
 
Sumukh
,
S. K.
 
Goudar
, and
B. B.
 
Das
, “
A Review on the Properties of Steel-Concrete Interface and Characterization Methods
,” in
Smart Technologies for Sustainable Development
(
Singapore
:
Springer
,
2021
),
167
203
, https://doi.org/10.1007/978-981-15-5001-0_15
87.
S. K.
 
Goudar
,
E. P.
 
Sumukh
, and
B. B.
 
Das
, “
Influence of Marine Environment Exposure on the Engineering Properties of Steel-Concrete Interface
,”
The Open Civil Engineering Journal
16
(
2022
):
e187414952210311
,
You do not currently have access to this content.