ABSTRACT

Previous literature has provided contradictory results, so we present the current investigation to provide additional information to assess the suitability of using soak calcination as a pretreatment method to increase the performance of calcined zeolite when used as the supplementary cementitious material. In this study, natural clinoptilolite zeolite was calcined for three hours at 200°C, 400°C, 600°C, 800°C, and 1,000°C, and the effects of calcination on different physical and chemical properties were observed using a range of experimental tests. The impacts of calcined zeolite were investigated in the hydrated system with the replacement of portland cement up to 20 % by mass on hydration kinetics (i.e., heat of hydration, setting time, chemical shrinkage, degree of hydration), drying shrinkage, and compressive strength. Results revealed that calcination minorly decreased the crystallinity, particle size, and peak pore size of the zeolite, leading to a slightly increased external specific surface area, whereas it increased the rate of moisture absorption and pH of zeolite particles. In the hydrated cementitious system, calcined zeolite reduced the workability and heat of hydration and retarded the initial setting time. The calcined zeolite particles absorbed a part of the water from the fresh mixture and expanded volumetrically, which led to a negative volume of chemical shrinkage up to the final setting time and increased the drying shrinkage. As the dosages of calcined zeolite increased, the compressive strength substantially decreased because of the lower degree of hydration. Overall, soak calcination pretreatment decreased the reactivity of clinoptilolite zeolite particles and impacted the performance of calcined zeolite in the blended system.

References

1.
C.
 
Bilim
, “
Properties of Cement Mortars Containing Clinoptilolite as a Supplementary Cementitious Material
,”
Construction and Building Materials
25
, no. 
8
(August
2011
):
3175
3180
,
2.
B.
 
Ahmadi
and
M.
 
Shekarchi
, “
Use of Natural Zeolite as a Supplementary Cementitious Material
,”
Cement and Concrete Composites
32
, no. 
2
(February
2010
):
134
141
,
3.
C. S.
 
Poon
,
L.
 
Lam
,
S. C.
 
Kou
, and
Z. S.
 
Lin
, “
A Study on the Hydration Rate of Natural Zeolite Blended Cement Pastes
,”
Construction and Building Materials
13
, no. 
8
(December
1999
):
427
432
,
4.
L. E.
 
Burris
, “
Increasing the Reactivity of Natural Zeolites Used as Supplementary Cementitious Materials
” (PhD diss., The University of Texas at Austin,
2014
).
5.
M. S.
 
Islam
and
B. J.
 
Mohr
, “
Early Age Properties and Microstructural Characterization of Zeolite Based Cementitious Materials
,”
Advances in Civil Engineering Materials
11
, no. 
1
(June
2022
):
300
320
,
6.
F.
 
Naiqian
and
H.
 
Tingyu
, “
Mechanism of Natural Zeolite Powder in Preventing Alkali-Silica Reaction in Concrete
,”
Advances in Cement Research
10
, no. 
3
(July
1998
):
101
108
,
7.
M.
 
Najimi
,
J.
 
Sobhani
,
B.
 
Ahmadi
, and
M.
 
Shekarchi
, “
An Experimental Study on Durability Properties of Concrete Containing Zeolite as a Highly Reactive Natural Pozzolan
,”
Construction and Building Materials
35
(
2012
):
1023
1033
,
8.
Y. T.
 
Tran
,
J.
 
Lee
,
P.
 
Kumar
,
K.-H.
 
Kim
, and
S. S.
 
Lee
, “
Natural Zeolite and Its Application in Concrete Composite Production
,”
Composites Part B: Engineering
165
(
2019
):
354
364
,
9.
M.
 
Nas
and
S.
 
Kurbetci
, “
Mechanical, Durability and Microstructure Properties of Concrete Containing Natural Zeolite
,”
Computers and Concrete
22
, no. 
5
(November
2018
):
449
459
,
10.
Y.
 
Kocak
,
E.
 
Tasci
, and
U.
 
Kaya
, “
The Effect of Using Natural Zeolite on the Properties and Hydration Characteristics of Blended Cements
,”
Construction and Building Materials
47
(
2013
):
720
727
,
11.
S. Y. N.
 
Chan
and
X.
 
Ji
, “
Comparative Study of the Initial Surface Absorption and Chloride Diffusion of High Performance Zeolite, Silica Fume and PFA Concretes
,”
Cement and Concrete Composites
21
, no. 
4
(August
1999
):
293
300
,
12.
T.
 
Markiv
,
K.
 
Sobol
,
M.
 
Franus
, and
W.
 
Franus
, “
Mechanical and Durability Properties of Concretes Incorporating Natural Zeolite
,”
Archives of Civil and Mechanical Engineering
16
, no. 
4
(September
2016
):
554
562
,
13.
T.
 
Perraki
,
G.
 
Kakali
, and
E.
 
Kontori
, “
Characterization and Pozzolanic Activity of Thermally Treated Zeolite
,”
Journal of Thermal Analysis and Calorimetry
82
, no. 
1
(September
2005
):
109
113
,
14.
L. E.
 
Burris
and
M. C. G.
 
Juenger
, “
Effect of Calcination on the Reactivity of Natural Clinoptilolite Zeolites Used as Supplementary Cementitious Materials
,”
Construction and Building Materials
258
(
2020
):
119988
,
15.
Ö. Ç.
 
Duvarcı
,
Y.
 
Akdeniz
,
F.
 
Özmıhçı
,
S.
 
Ülkü
,
D.
 
Balköse
, and
M.
 
Çiftçioğlu
, “
Thermal Behaviour of a Zeolitic Tuff
,”
Ceramics International
33
, no. 
5
(July
2007
):
795
801
,
16.
A.
 
Ates
and
C.
 
Hardacre
, “
The Effect of Various Treatment Conditions on Natural Zeolites: Ion Exchange, Acidic, Thermal and Steam Treatments
,”
Journal of Colloid and Interface Science
372
, no. 
1
(April
2012
):
130
140
,
17.
Y.
 
Tao
,
H.
 
Kanoh
,
L.
 
Abrams
, and
K.
 
Kaneko
, “
Mesopore-Modified Zeolites: Preparation, Characterization, and Applications
,”
Chemical Reviews
106
, no. 
3
(March
2006
):
896
910
,
18.
A. E. W.
 
Beers
,
J. A.
 
van Bokhoven
,
K. M.
 
de Lathouder
,
F.
 
Kapteijn
, and
J. A.
 
Moulijn
, “
Optimization of Zeolite Beta by Steaming and Acid Leaching for the Acylation of Anisole with Octanoic Acid: A Structure-Activity Relation
,”
Journal of Catalysis
218
, no. 
2
(September
2003
):
239
248
,
19.
B. B.
 
Sabir
,
S.
 
Wild
, and
J.
 
Bai
, “
Metakaolin and Calcined Clays as Pozzolans for Concrete: A Review
,”
Cement and Concrete Composites
23
, no. 
6
(December
2001
):
441
454
,
20.
S. A.
 
Bernal
,
M. C. G.
 
Juenger
,
X.
 
Ke
,
W.
 
Matthes
,
B.
 
Lothenbach
,
N.
 
De Belie
, and
J. L.
 
Provis
, “
Characterization of Supplementary Cementitious Materials by Thermal Analysis
,”
Materials and Structures
50
, no. 
1
(
2017
):
26
,
21.
G.
 
Habert
,
N.
 
Choupay
,
J. M.
 
Montel
,
D.
 
Guillaume
, and
G.
 
Escadeillas
, “
Effects of the Secondary Minerals of the Natural Pozzolans on Their Pozzolanic Activity
,”
Cement and Concrete Research
38
, no. 
7
(July
2008
):
963
975
,
22.
R.
 
Fernández
,
R.
 
Vigil de la Villa
,
R.
 
Garcia
,
O.
 
Rodriguez
,
M.
 
Frias
, and
E.
 
Villar-Cociña
, “
Characterization and Pozzolanic Activity of a Calcined Natural Zeolite
,” in
Proceedings of 13th International Congress on the Chemistry of Cement
(
2011
),
1
7
.
Madrid, Spain
.
23.
K.
 
Narasimhulu
,
R.
 
Gettu
, and
K. G.
 
Babu
, “
Beneficiation of Natural Zeolite through Flash Calcination for Its Use as a Mineral Admixture in Concrete
,”
Journal of Materials in Civil Engineering
26
, no. 
1
(January
2014
):
24
33
,
24.
S.
 
Seraj
,
R. D.
 
Ferron
, and
M. C. G.
 
Juenger
, “
Calcining Natural Zeolites to Improve Their Effect on Cementitious Mixture Workability
,”
Cement and Concrete Research
85
(
2016
):
102
110
,
25.
E.
 
Küçükyıldırım
and
B.
 
Uzal
, “
Characteristics of Calcined Natural Zeolites for Use in High-Performance Pozzolan Blended Cements
,”
Construction and Building Materials
73
(
2014
):
229
234
,
26.
R.
 
Snellings
,
G.
 
Mertens
, and
J.
 
Elsen
, “
Supplementary Cementitious Materials
,”
Reviews in Mineralogy and Geochemistry
74
, no. 
1
(January
2012
):
211
278
,
27.
M.
 
Johnson
,
D.
 
O’Connor
,
P.
 
Barnes
,
C. R. A.
 
Catlow
,
S. L.
 
Owens
,
G.
 
Sankar
,
R.
 
Bell
,
S. J.
 
Teat
, and
R.
 
Stephenson
, “
Cation Exchange, Dehydration, and Calcination in Clinoptilolite: In Situ X-ray Diffraction and Computer Modeling
,”
The Journal of Physical Chemistry B
107
, no. 
4
(January
2003
):
942
951
,
28.
Standard Specification for Portland Cement (Superseded)
, ASTM C150/C150M-21 (
West Conshohocken, PA
:
ASTM International
, approved July
15
,
2021
), https://doi.org/10.1520/C0150_C0150M-21
29.
Standard Specification for Concrete Aggregates (Superseded)
, ASTM C33/C33M-18 (
West Conshohocken, PA
:
ASTM International
, approved March
15
,
2018
), https://doi.org/10.1520/C0033_C0033M-18
30.
Standard Method of Test for Particle Size Analysis of Hydraulic Cement and Related Materials by Light Scattering
, AASHTO T353 (
Washington, DC
:
American Association of State Highway and Transportation Officials
,
2014
).
31.
D. G.
 
Keaton
, “
Nano-Scale Pore Analysis of Cementitious Mortars Subject to Delayed Ettringite Formation
” (master’s thesis, Tennessee Technological University,
2012
).
32.
L.
 
Greenspan
, “
Humidity Fixed Points of Binary Saturated Aqueous Solutions
,”
Journal of Research of the National Bureau of Standards–Section A. Physics and Chemistry
81A
, no. 
1
(January–February
1977
):
89
96
,
33.
Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency
, ASTM C305-20 (
West Conshohocken, PA
:
ASTM International
, approved July
15
,
2020
), https://doi.org/10.1520/C0305-20
34.
Standard Test Method for Flow of Hydraulic Cement Mortar
, ASTM C1437-20 (
West Conshohocken, PA
:
ASTM International
, approved October
1
,
2020
), https://doi.org/10.1520/C1437-20
35.
Standard Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry (Superseded)
, ASTM C1679-17 (
West Conshohocken, PA
:
ASTM International
, approved December
1
,
2017
), https://doi.org/10.1520/C1679-17
36.
Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle
, ASTM C191-21 (
West Conshohocken, PA
:
ASTM International
, approved October
1
,
2021
), https://doi.org/10.1520/C0191-21
37.
Standard Test Method for Chemical Shrinkage of Hydraulic Cement Paste (Superseded)
, ASTM C1608-17 (
West Conshohocken, PA
:
ASTM International
, approved August
1
,
2017
), https://doi.org/10.1520/C1608-17
38.
Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens) (Superseded)
, ASTM C109/C109M-21 (
West Conshohocken, PA
:
ASTM International
, approved July
15
,
2021
), https://doi.org/10.1520/C0109_C0109M-21
39.
L. E.
 
Copeland
and
J. C.
 
Hayes
,
The Determination of Non-evaporable Water in Hardened Portland Cement Pastes, Portland Cement Association Research Bulletin
, no. 
47
(
Skokie, IL
:
Portland Cement Association
,
1953
).
40.
B. J.
 
Mohr
and
K. L.
 
Hood
, “
Factors Influencing Mitigation Strategies for Autogenous Shrinkage
,”
Advances in Civil Engineering Materials
7
, no. 
4
(September
2018
):
672
690
,
41.
D. P.
 
Bentz
and
E. J.
 
Garboczi
, “
Simulation Studies of the Effects of Mineral Admixtures on the Cement Paste-Aggregate Interfacial Zone
,”
ACI Materials Journal
88
, no. 
5
(September
1991
):
518
529
,
42.
L.
 
Lam
,
Y. L.
 
Wong
, and
C. S.
 
Poon
, “
Degree of Hydration and Gel/Space Ratio of High-Volume Fly Ash/Cement Systems
,”
Cement and Concrete Research
30
, no. 
5
(May
2000
):
747
756
,
43.
A. M.
 
Neville
,
Properties of Concrete
, 3rd ed. (
London
:
Pitman Publishing
,
1981
).
44.
I.
 
Pane
and
W.
 
Hansen
, “
Investigation of Blended Cement Hydration by Isothermal Calorimetry and Thermal Analysis
,”
Cement and Concrete Research
35
, no. 
6
(June
2005
):
1155
1164
,
45.
C.
 
Liu
,
D.
 
Chen
, and
Z. Q.
 
Cheng
, “
Effect of Zeolite Powder on the Hydration and Microstructure Evolution of Hardened Cement Paste at Low Water-Binder Ratio
,”
Romanian Journal of Materials
50
, no. 
3
(
2020
):
331
336
.
46.
Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement (Superseded)
, ASTM C596-18 (
West Conshohocken, PA
:
ASTM International
, approved December
1
,
2018
), https://doi.org/10.1520/C0596-18
47.
C.
 
Colella
, “
Ion Exchange Equilibria in Zeolite Minerals
,”
Mineralium Deposita
31
, no. 
6
(September
1996
):
554
562
,
48.
A.
 
Dyer
, “
Ion-Exchange Properties of Zeolites and Related Materials
,” in
Studies in Surface Science and Catalysis
, volume 168 (
Amsterdam, The Netherlands
:
Elsevier
,
2007
),
525
553
, https://doi.org/10.1016/S0167-2991(07)80804-4
49.
F. A.
 
Mumpton
, “
Natural Zeolites
,” in
Mineralogy and Geology of Natural Zeolites
, Volume 4 (
Chantilly, VA
:
Mineralogical Society of America
,
1977
),
1
18
.
50.
R.
 
Snellings
,
G.
 
Mertens
,
Ö.
 
Cizer
, and
J.
 
Elsen
, “
Early Age Hydration and Pozzolanic Reaction in Natural Zeolite Blended Cements: Reaction Kinetics and Products by in Situ Synchrotron X-ray Powder Diffraction
,”
Cement and Concrete Research
40
, no. 
12
(December
2010
):
1704
1713
,
51.
M.
 
Boháč
,
D.
 
Kubátová
,
R.
 
Nečas
,
A.
 
Zezulová
,
A.
 
Masárová
, and
R.
 
Novotný
, “
Properties of Cement Pastes with Zeolite during Early Stage of Hydration
,”
Procedia Engineering
151
(
2016
):
2
9
,
52.
T.
 
Perraki
,
E.
 
Kontori
,
S.
 
Tsivilis
, and
G.
 
Kakali
, “
The Effect of Zeolite on the Properties and Hydration of Blended Cements
,”
Cement and Concrete Composites
32
, no. 
2
(February
2010
):
128
133
,
53.
V.
 
Lilkov
,
O.
 
Petrov
,
V.
 
Petkova
,
N.
 
Petrova
, and
Y.
 
Tzvetanova
, “
Study of the Pozzolanic Activity and Hydration Products of Cement Pastes with Addition of Natural Zeolites
,”
Clay Minerals
46
, no. 
2
(June
2011
):
241
250
,
54.
F.
 
Stoppa
,
F.
 
Scordari
,
E.
 
Mesto
,
V.
 
Sharygin
, and
G.
 
Bortolozzi
, “
Calcium-Aluminum-Silicate-Hydrate ‘Cement’ Phases and Rare Ca-Zeolite Association at Colle Fabbri, Central Italy
,”
Open Geosciences
2
, no. 
2
(June
2010
):
175
187
,
55.
M.
 
Omerašević
,
J.
 
Ružić
,
B. N.
 
Vasiljević
,
Z.
 
Baščarević
,
D.
 
Bučevac
,
J.
 
Orlić
, and
L.
 
Matović
, “
Transformation of Cs-Exchanged Clinoptilolite to CsAlSi5O12 by Hot-Pressing
,”
Ceramics International
43
, no. 
16
(November
2017
):
13500
13504
,
56.
H.
 
Justnes
,
T.
 
Hammer
,
B.
 
Ardoullie
,
E.
 
Hendrix
,
D.
 
Van Gemert
,
K.
 
Overmeer
,
K. U.
 
Leuven
, and
E. J.
 
Sellevold
, “
Chemical Shrinkage of Cement Paste, Mortar and Concrete
,” in
Proceedings of the International Workshop on Autogenous Shrinkage of Concrete
(
Hiroshima
:
Japan Concrete Institute
,
1998
),
201
211
.
57.
D.
 
Jana
, “
A New Look to an Old Pozzolan: Clinoptilolite - A Promising Pozzolan in Concrete
,” in
Proceedings of the 29th ICMA Conference on Cement Microscopy
(
Quebec City, Canada
:
International Cement Microscopy Association
,
2007
),
168
206
.
58.
M. H.
 
Cornejo
,
J.
 
Elsen
,
C.
 
Paredes
, and
H.
 
Baykara
, “
Thermomechanical Treatment of Two Ecuadorian Zeolite-Rich Tuffs and Their Potential Usage as Supplementary Cementitious Materials
,”
Journal of Thermal Analysis and Calorimetry
115
, no. 
1
(January
2014
):
309
321
,
59.
M. S.
 
Islam
,
B. J.
 
Mohr
, and
D.
 
VandenBerge
, “
Performance of Natural Clinoptilolite Zeolite in the Cementitious Materials: A Comparative Study with Metakaolin, Fly Ash, and Blast Furnace Slag
,”
Journal of Building Engineering
53
(
2022
):
104535
,
60.
M. S.
 
Islam
and
B. J.
 
Mohr
, “
Long-Term Properties and Microstructural Characterization of Natural Clinoptilolite Zeolite-Based Cementitious Materials
,”
Innovative Infrastructure Solutions
8
, no. 
12
(December
2023
):
325
,
61.
M. S.
 
Islam
and
B. J.
 
Mohr
, “
Performance of Clinoptilolite Zeolite after Milling as a Pretreatment on Hydration Kinetics, Shrinkage, and Alkali-Silica Reaction of Cementitious Materials
,”
CEMENT
12
(
2023
):
100069
,
You do not currently have access to this content.