ABSTRACT

Water absorbing polymer (WAP) is emerging as soil amendment material for various soil infrastructures, such as urban green infrastructure, green roofs, landfill covers, and climate-resilient agriculture, to promote vegetation growth and thereby increase the sustainability of the projects. WAP amended soils experience alternating periods of drying and wetting because of their exposure to different climate conditions. Precise determination of volumetric water content (VWC) in vadose zone is required to establish the soil-water retention curve (SWRC) in WAP amended soils. This study aims to evaluate the accuracy of a capacitance sensor (CS) for the purpose of continuous VWC monitoring in WAP amended soils. A controlled laboratory environment was used for the performance evaluation of CS in three different surface soils (sand, silt loam, and clay loam) with four WAP amendment rates (0 %, 0.1 %, 0.2 %, and 0.4 %). The CS completely underestimates the VWC of WAP amended soils because of the bound water inside the WAP network. Two different calibration equations (i.e., third-order polynomial and linear) were recommended to enhance the precision of VWC measurement in WAP amended soils. The linear calibration method is further extended for obtaining a generalized calibration procedure valid for all soil textures and WAP concentrations. The importance of the proposed calibration procedure for a precise SWRC measurement of WAP amended soils was demonstrated. The results indicated that the error in VWC measurement further influences the saturated water content, field capacity, and permanent wilting point, which are essential parameters to estimate the soil-water storage, and irrigation water requirement.

References

1.
R.
 
Liao
,
P.
 
Yang
, and
Y.
 
Zhu
, “
Effect of Superabsorbent Polymer on Root Water Uptake and Quantification of Water Uptake from Soil Profile in Dry Land
,”
Soil Use and Management
33
, no. 
3
(September
2017
):
482
486
,
2.
K.
 
Lejcuś
,
J.
 
Dąbrowska
,
D.
 
Garlikowski
, and
M.
 
Śpitalniak
, “
The Application of Water-Absorbing Geocomposites to Support Plant Growth on Slopes
,”
Geosynthetics International
22
, no. 
6
(December
2015
):
452
456
,
3.
B.
 
Rattan
,
K. V.
 
Dhobale
,
A.
 
Saha
,
A.
 
Garg
,
L.
 
Sahoo
, and
S.
 
Sreedeep
, “
Influence of Inorganic and Organic Fertilizers on the Performance of Water-Absorbing Polymer Amended Soils from the Perspective of Sustainable Water Use Efficiency
,”
Soil and Tillage Research
223
(
2022
):
105449
,
4.
A.
 
Saha
,
B.
 
Rattan
,
S.
 
Sekharan
, and
U.
 
Manna
, “
Quantifying the Interactive Effect of Water Absorbing Polymer (WAP)-Soil Texture on Plant Available Water Content and Irrigation Frequency
,”
Geoderma
368
(
2020
):
114310
,
5.
S.
 
Bordoloi
and
C. W. W.
 
Ng
, “
The Effects of Vegetation Traits and Their Stability Functions in Bio-engineered Slopes: A Perspective Review
,”
Engineering Geology
275
(
2020
):
105742
,
6.
A.
 
Saha
and
S.
 
Sekharan
, “
Potential Application of Superabsorbent Hydrogel Composite in Geotechnical Engineering Focusing Sustainability: State-of-the-Art Review
,”
Indian Geotechnical Journal
. Published ahead of print, February 3,
2024
,
7.
L.
 
Yang
,
Y.
 
Yang
,
Z.
 
Chen
,
C.
 
Guo
, and
S.
 
Li
, “
Influence of Super Absorbent Polymer on Soil Water Retention, Seed Germination and Plant Survivals for Rocky Slopes Eco-engineering
,”
Ecological Engineering
62
(
2014
):
27
32
,
8.
A.
 
Saha
,
C. B.
 
Gupt
, and
S.
 
Sekharan
, “
Recycling Natural Fibre to Superabsorbent Hydrogel Composite for Conservation of Irrigation Water in Semi-arid Regions
,”
Waste and Biomass Valorization
12
, no. 
12
(December
2021
):
6433
6448
,
9.
O.
 
Mohawesh
and
W.
 
Durner
, “
Effects of Bentonite, Hydrogel and Biochar Amendments on Soil Hydraulic Properties from Saturation to Oven Dryness
,”
Pedosphere
29
, no. 
5
(October
2019
):
598
607
,
10.
A.
 
Saha
,
S.
 
Sekharan
, and
U.
 
Manna
, “
Superabsorbent Hydrogel (SAH) as a Soil Amendment for Drought Management: A Review
,”
Soil and Tillage Research
204
(
2020
):
104736
,
11.
D. G.
 
Fredlund
and
H.
 
Rahardjo
,
Soil Mechanics for Unsaturated Soils
(
Hoboken, NJ
:
John Wiley & Sons
,
1993
).
12.
C.
 
Malaya
and
S.
 
Sreedeep
, “
A Study on the Influence of Measurement Procedures on Suction-Water Content Relationship of a Sandy Soil
,”
Journal of Testing and Evaluation
38
, no. 
6
(November
2010
):
691
699
,
13.
A.
 
Saha
and
S.
 
Sekharan
, “
Importance of Volumetric Shrinkage Curve (VSC) for Determination of Soil–Water Retention Curve (SWRC) for Low Plastic Natural Soils
,”
Journal of Hydrology
596
(
2021
):
126113
,
14.
S. R.
 
Evett
and
J. L.
 
Steiner
, “
Precision of Neutron Scattering and Capacitance Type Soil Water Content Gauges from Field Calibration
,”
Soil Science Society of America Journal
59
, no. 
4
(July/August
1995
):
961
968
,
15.
Q.
 
Huang
,
O. O.
 
Akinremi
,
R.
 
Sri Rajan
, and
P.
 
Bullock
, “
Laboratory and Field Evaluation of Five Soil Water Sensors
,”
Canadian Journal of Soil Science
84
, no. 
4
(November
2004
):
431
438
,
16.
V.
 
Polyakov
,
A.
 
Fares
, and
M. H.
 
Ryder
, “
Calibration of a Capacitance System for Measuring Water Content of Tropical Soil
,”
Vadose Zone Journal
4
, no. 
4
(November
2005
):
1004
1010
,
17.
F.
 
Visconti
,
J. M.
 
de Paz
,
D.
 
Martínez
, and
M. J.
 
Molina
, “
Laboratory and Field Assessment of the Capacitance Sensors Decagon 10HS and 5TE for Estimating the Water Content of Irrigated Soils
,”
Agricultural Water Management
132
(
2014
):
111
119
,
18.
J.
 
Shaikh
,
S. K.
 
Yamsani
,
S.
 
Sekharan
, and
R. R.
 
Rakesh
, “
Performance Evaluation of 5TM Sensor for Real-Time Monitoring of Volumetric Water Content in Landfill Cover System
,”
Advances in Civil Engineering Materials
8
, no. 
1
(October
2019
):
322
335
,
19.
A.
 
Fares
and
A. K.
 
Alva
, “
Evaluation of Capacitance Probes for Optimal Irrigation of Citrus through Soil Moisture Monitoring in an Entisol Profile
,”
Irrigation Science
19
, no. 
2
(January
2000
):
57
64
,
20.
M.
 
Ataka
,
Y.
 
Kominami
,
T.
 
Miyama
,
K.
 
Yoshimura
,
M.
 
Jomura
, and
M.
 
Tani
, “
Using Capacitance Sensors for the Continuous Measurement of the Water Content in the Litter Layer of Forest Soil
,”
Applied and Environmental Soil Science
2014
(
2014
):
627129
,
21.
J.
 
Shaikh
,
S.
 
Bordoloi
,
S. K.
 
Yamsani
,
S.
 
Sekharan
,
R. R.
 
Rakesh
, and
A. K.
 
Sarmah
, “
Long-Term Hydraulic Performance of Landfill Cover System in Extreme Humid Region: Field Monitoring and Numerical Approach
,”
The Science of the Total Environment
688
(
2019
):
409
423
,
22.
Y.
 
Gong
,
Q.
 
Cao
, and
Z.
 
Sun
, “
The Effects of Soil Bulk Density, Clay Content and Temperature on Soil Water Content Measurement Using Time-Domain Reflectometry
,”
Hydrological Processes
17
, no. 
18
(December
2003
):
3601
3614
,
23.
R.
 
Chen
,
Y.
 
Chen
,
W.
 
Chen
, and
Y.
 
Chen
, “
Time Domain Reflectometry for Water Content Measurement of Municipal Solid Waste
,”
Environmental Engineering Science
29
, no. 
6
(June
2012
):
486
493
,
24.
N.
 
Parvin
and
A.
 
Degré
, “
Soil-Specific Calibration of Capacitance Sensors Considering Clay Content and Bulk Density
,”
Soil Research
54
, no. 
1
(January
2016
):
111
119
,
25.
D. G.
 
Chandler
,
M.
 
Seyfried
,
M.
 
Murdock
, and
J. P.
 
McNamara
, “
Field Calibration of Water Content Reflectometers
,”
Soil Science Society of America Journal
68
, no. 
5
(September
2004
):
1501
1507
,
26.
C. M. P.
 
Vaz
,
S.
 
Jones
,
M.
 
Meding
, and
M.
 
Tuller
, “
Evaluation of Standard Calibration Functions for Eight Electromagnetic Soil Moisture Sensors
,”
Vadose Zone Journal
12
, no. 
2
(May
2013
):
1
16
,
27.
K.
 
Kameyama
,
T.
 
Miyamoto
, and
T.
 
Shiono
, “
Influence of Biochar Incorporation on TDR-Based Soil Water Content Measurements
,”
European Journal of Soil Science
65
, no. 
1
(January
2014
):
105
112
,
28.
C. L.
 
Phillips
,
S. E.
 
Light
,
H. T.
 
Gollany
,
S.
 
Chiu
,
T.
 
Wanzek
,
K.
 
Meyer
, and
K. M.
 
Trippe
, “
Can Biochar Conserve Water in Oregon Agricultural Soils?
Soil and Tillage Research
198
(
2020
):
104525
,
29.
N.
 
Colombani
,
M.
 
Mastrocicco
,
D.
 
Di Giuseppe
,
B.
 
Faccini
, and
M.
 
Coltorti
, “
Variation of the Hydraulic Properties and Solute Transport Mechanisms in a Silty-Clay Soil Amended with Natural Zeolites
,”
CATENA
123
(
2014
):
195
204
,
30.
A.
 
Fares
,
R.
 
Awal
, and
H. K.
 
Bayabil
, “
Soil Water Content Sensor Response to Organic Matter Content under Laboratory Conditions
,”
Sensors
16
, no. 
8
(August
2016
):
1239
,
31.
D.
 
Feng
,
B.
 
Bai
,
C.
 
Ding
,
H.
 
Wang
, and
Y.
 
Suo
, “
Synthesis and Swelling Behaviors of Yeast-g-Poly (Acrylic Acid) Superabsorbent Co-polymer
,”
Industrial & Engineering Chemistry Research
53
, no. 
32
(July
2014
):
12760
12769
,
32.
H. R.
 
Bogena
,
J. A.
 
Huisman
,
C.
 
Oberdörster
, and
H.
 
Vereecken
, “
Evaluation of a Low-Cost Soil Water Content Sensor for Wireless Network Applications
,”
Journal of Hydrology
344
, nos. 
1–2
(September
2007
):
32
42
,
33.
G. C.
 
Topp
,
J. L.
 
Davis
, and
A. P.
 
Annan
, “
Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines
,”
Water Resources Research
16
, no. 
3
(June
1980
):
574
582
,
34.
METER Group
,
ECH2O 5TM Volumetric Water Content (VWC) and Temperature Sensor, Operator’s Manual
(
Pullman, WA
:
METER Group
,
2019
).
35.
Decagon Devices
,
5TE Water Content, EC and Temperature Sensors, Operator’s Manual
, Version 7 (
Pullman, WA
:
Decagon Devices
,
2008
).
36.
Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis
, ASTM D7928-21e1 (West
Conshohocken, PA
:
ASTM International
, approved June 10,
2021
), https://doi.org/10.1520/D7928-21E01
37.
Standard Test Method for Specific Gravity of Soil Solids by Water Pycnometer
, ASTM D854-23 (
West Conshohocken, PA
:
ASTM International
, approved on November 14,
2023
), https://doi.org/10.1520/D0854-23
38.
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
, ASTM D4318-17e1 (
West Conshohocken, PA
:
ASTM International
, approved, June 1,
2017
), https://doi.org/10.1520/D4318-17E01
39.
Standard Test Method for Measuring the Exchange Complex and Cation Exchange Capacity of Inorganic Fine-Grained Soils
, ASTM D7503-18 (
West Conshohocken, PA
:
ASTM International
, approved May 1,
2018
), https://doi.org/10.1520/D7503-18
40.
Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
, ASTM D2487-17e1 (
West Conshohocken, PA
:
ASTM International
, approved December 15,
2017
), https://doi.org/10.1520/D2487-17E01
41.
United States Department of Agriculture
,
Keys to Soil Taxonomy
, 11th ed. (
Kettery, ME
:
Books Express Publishing
,
2010
).
42.
A. K.
 
Bhardwaj
,
I.
 
Shainberg
,
D.
 
Goldstein
,
D. N.
 
Warrington
, and
G. J.
 
Levy
, “
Water Retention and Hydraulic Conductivity of Cross-Linked Polyacrylamides in Sandy Soils
,”
Soil Science Society of America Journal
71
, no. 
2
(March
2007
):
406
412
,
43.
J.
 
El-Asmar
,
H.
 
Jaafar
,
I.
 
Bashour
,
M. T.
 
Farran
, and
I. P.
 
Saoud
, “
Hydrogel Banding Improves Plant Growth, Survival, and Water Use Efficiency in Two Calcareous Soils
,”
Clean Soil Air Water
45
, no. 
7
(July
2017
):
1700251
,
44.
A.
 
Saha
,
B.
 
Rattan
,
S.
 
Sekharan
, and
U.
 
Manna
, “
Quantifying the Combined Effect of pH and Salinity on the Performance of Water Absorbing Polymers Used for Drought Management
,”
Journal of Polymer Research
28
, no. 
11
(November
2021
):
428
,
45.
S. S.
 
Dorraji
,
A.
 
Golchin
, and
S.
 
Ahmadi
, “
The Effects of Hydrophilic Polymer and Soil Salinity on Corn Growth in Sandy and Loamy Soils
,”
Clean Soil Air Water
38
, no. 
7
(July
2010
):
584
591
,
46.
A.
 
Saha
,
S.
 
Sekharan
, and
U.
 
Manna
, “
Evaluation of Capacitance Sensor for Suction Measurement in Silty Clay Loam
,”
Geotechnical and Geological Engineering
38
, no. 
4
(August
2020
):
4319
4331
,
47.
A.
 
Saha
,
S.
 
Sekharan
, and
U.
 
Manna
, “
Performance of an Electromagnetic Sensor for Field Monitoring of Volumetric Water Content in Water-Absorbing Polymer Amended Soil
,” in
Transportation, Water and Environmental Geotechnics: Proceedings of Indian Geotechnical Conference
, eds.
C. N. V. S.
 
Reddy
,
S.
 
Saride
, and
S.
 
Haldar
(
Singapore
:
Springer
,
2021
):
15
24
, https://doi.org/10.1007/978-981-16-2260-1_2
48.
D. A.
 
Boyarskii
,
V. V.
 
Tikhonov
, and
N. Y.
 
Komarova
, “
Model of Dielectric Constant of Bound Water in Soil for Applications of Microwave Remote Sensing-Abstract
,”
Journal of Electromagnetic Waves and Applications
16
, no. 
3
(March
2002
):
411
412
,
49.
A. M. O.
 
Mohamed
and
E. K.
 
Paleologos
,
Fundamentals of Geoenvironmental Engineering: Understanding Soil, Water, and Pollutant Interaction and Transport
(
Woburn, MA
:
Butterworth-Heinemann
,
2018
).
50.
Y.
 
Wei
and
D. J.
 
Durian
, “
Effect of Hydrogel Particle Additives on Water-Accessible Pore Structure of Sandy Soils: A Custom Pressure Plate Apparatus and Capillary Bundle Model
,”
Physical Review E
87
, no. 
5
(May
2013
):
053013
,
51.
M.
 
Rahmati
,
A.
 
Pohlmeier
,
S. M. A.
 
Abasiyan
,
L.
 
Weihermüller
, and
H.
 
Vereecken
, “
Water Retention and Pore Size Distribution of a Biopolymeric-Amended Loam Soil
,”
Vadose Zone Journal
18
, no. 
1
(May
2019
):
1
13
,
52.
V. E.
 
Hansen
,
G. E.
 
Stringham
, and
O. W.
 
Israelsen
,
Irrigation Principles and Practices
, 4th ed. (
New York
:
John Wiley & Sons
,
1979
).
53.
V.
 
Zupanc
and
M. Z.
 
Justin
, “
Changes in Soil Characteristics During Landfill Leachate Irrigation of Populus Deltoides
,”
Waste Management
30
, no. 
11
(November
2010
):
2130
2136
,
54.
F. J.
 
Veihmeyer
and
A. H.
 
Hendrickson
, “
The Moisture Equivalent as a Measure of the Field Capacity of Soils
,”
Soil Science
32
, no. 
3
(September
1931
):
181
194
,
55.
R. O.
 
Slatyer
,
Plant-Water Relationships
(
New York
:
Academic Press
,
1967
).
56.
E. A.
 
Colman
, “
A Laboratory Procedure for Determining the Field Capacity of Soils
,”
Soil Science
63
, no. 
4
(April
1947
):
277
284
,
You do not currently have access to this content.