Abstract

Geopolymers/alkali-activated materials (AAMs) are widely regarded as ecofriendly and durable alternatives to portland-based cement concrete. However, commercial alkali activators, especially the sodium silicate used to manufacture geopolymers/AAMs, are associated with a significant amount of carbon emission during their production. In this study, the feasibility of using rice husk ash (RHA) as a source for an alternative sustainable alkali activator has been explored at ambient temperature curing, and the durability properties of the geopolymer mortars (GPM) has been investigated. Three different concentrations of sodium hydroxide (SH), i.e., 20, 24, and 27 wt. % solutions, have been taken for the synthesis of RHA alkali activator used in synthesis of GPM, and another GPM with conventional alkali activator has also been synthesized for comparative study. Durability studies such as water absorption, sorptivity, sulfate resistance, and acid resistance were evaluated extensively in terms of change in weight and compressive strength. The experimental results revealed that the GPM made with 24 wt. % SH-RHA–based activator solution (R24) has optimal performance considering all the durability parameters and has a close correlation to the results obtained for the control GPM made with conventional alkali activator (C24). The microstructural studies further revealed that the gel structure of the R24 is compact and homogeneous, similar to that of C24; however, the former has a N-A-S-H–dominated gel matrix and the latter consists of N-(C)-A-S-H–type gels.

References

1.
Mishra
J.
,
Das
S. K.
,
Nanda
B.
,
Kumar Patro
S.
, and
Mustakim
S. M.
, “
Strength Development in Ferrochrome Ash-Based Geopolymer Concrete
,” in
Circular Economy in the Construction Industry
(
Boca Raton, FL
:
CRC Press
,
2021
),
175
183
. https://doi.org/10.1201/9781003217619-24
2.
Adesina
A.
,
Rajesh Kumar
K.
,
Odeyemi
S.
,
Mahender
K.
,
Das
S.
, and
Cyriaque
K.
, “
Mitigating of Drying Shrinkage in Alkali-Activated Slag Composites
,”
IOP Conference Series: Materials Science and Engineering
981
, no. 
3
(December
2020
): 032075, https://doi.org/10.1088/1757-899X/981/3/032075
3.
Das
S. K.
,
Tripathi
A. K.
,
Kandi
S. K.
,
Mustakim
S. M.
,
Bhoi
B.
, and
Rajput
P.
, “
Ferrochrome Slag: A Critical Review of Its Properties, Environmental Issues and Sustainable Utilization
,”
Journal of Environmental Management
326
, Part
A
(January
2023
): 116674, https://doi.org/10.1016/j.jenvman.2022.116674
4.
Mishra
J.
,
Das
S. K.
,
Krishna
R. S.
, and
Nanda
B.
, “
Utilization of Ferrochrome Ash as a Source Material for Production of Geopolymer Concrete for a Cleaner Sustainable Environment
,”
Indian Concrete Journal
94
, no. 
7
(July
2020
):
40
49
.
5.
Das
S. K.
,
Dan
A. K.
,
Behera
U.
,
Tripathi
A. K.
,
Behari
M.
,
Das
D.
, and
Parhi
P. K.
, “
A Novel Approach on Leaching Study for Removal of Toxic Elements from Thermal Power Plant-Based Fly Ash Using Natural Bio-surfactant
,”
Case Studies in Chemical and Environmental Engineering
4
(December
2021
): 100156, https://doi.org/10.1016/j.cscee.2021.100156
6.
Das
S. K.
,
Mishra
S.
,
Das
D.
,
Mustakim
S. M.
,
Kaze
C. R.
, and
Parhi
P. K.
, “
Characterization and Utilization of Coal Ash for Synthesis of Building Materials
,” in
Clean Coal Technologies
, ed.
Jyothi
R. K.
and
Parhi
P. K.
(
Cham, Switzerland
:
Springer
,
2021
),
487
509
.
7.
Das
S. K.
,
Mustakim
S. M.
,
Adesina
A.
,
Mishra
J.
,
Alomayri
T. S.
,
Assaedi
H. S.
, and
Kaze
C. R.
, “
Fresh, Strength and Microstructure Properties of Geopolymer Concrete Incorporating Lime and Silica Fume as Replacement of Fly Ash
,”
Journal of Building Engineering
32
(November
2020
): 101780, https://doi.org/10.1016/j.jobe.2020.101780
8.
Leklou
N.
and
Das
S. K.
, “
Effect of Curing Temperatures on Hydration, Mechanical and Microstructural Properties of Metakaolin-Blended Cement Mortars
,”
Journal of Thermal Analysis and Calorimetry
148
, no. 
14
(July
2023
):
6747
6760
, https://doi.org/10.1007/s10973-023-12228-8
9.
Cai
J.
,
Pan
J.
,
Han
J.
, and
Wang
X.
, “
Mechanical Behaviors of Metakaolin-Based Engineered Geopolymer Composite under Ambient Curing Condition
,”
Journal of Materials in Civil Engineering
34
, no. 
7
(July
2022
): 04022152, https://doi.org/10.1061/(ASCE)MT.1943-5533.0004304
10.
Das
S. K.
,
Adediran
A.
,
Rodrigue Kaze
C.
,
Mustakim
S. M.
, and
Leklou
N.
, “
Production, Characteristics, and Utilization of Rice Husk Ash in Alkali Activated Materials: An Overview of Fresh and Hardened State Properties
,”
Construction and Building Materials
345
(August
2022
): 128341, https://doi.org/10.1016/j.conbuildmat.2022.128341
11.
Mishra
J.
,
Nanda
B.
,
Patro
S. K.
,
Das
S. K.
, and
Mustakim
S. M.
, “
Influence of Ferrochrome Ash on Mechanical and Microstructure Properties of Ambient Cured Fly Ash-Based Geopolymer Concrete
,”
Journal of Material Cycles and Waste Management
24
, no. 
3
(May
2022
):
1095
1108
, https://doi.org/10.1007/s10163-022-01381-1
12.
Mishra
J.
,
Nanda
B.
,
Patro
S. K.
,
Das
S. K.
, and
Mustakim
S. M.
, “
Strength and Microstructural Characterization of Ferrochrome Ash- and Ground Granulated Blast Furnace Slag-Based Geopolymer Concrete
,”
Journal of Sustainable Metallurgy
8
, no. 
1
(March
2022
):
156
169
, https://doi.org/10.1007/s40831-021-00469-6
13.
Das
S. K.
,
Mishra
J.
,
Mustakim
S. M.
,
Adesina
A.
,
Kaze
C. R.
, and
Das
D.
, “
Sustainable Utilization of Ultrafine Rice Husk Ash in Alkali Activated Concrete: Characterization and Performance Evaluation
,”
Journal of Sustainable Cement-Based Materials
11
, no. 
2
(
2022
):
100
112
, https://doi.org/10.1080/21650373.2021.1894265
14.
Awoyera
P.
and
Adesina
A.
, “
Durability Properties of Alkali Activated Slag Composites: Short Overview
,”
Silicon
12
, no. 
4
(April
2020
):
987
996
, https://doi.org/10.1007/s12633-019-00199-1
15.
Alsalman
A.
,
Assi
L. N.
,
Kareem
R. S.
,
Carter
K.
, and
Ziehl
P.
, “
Energy and CO2 Emission Assessments of Alkali-Activated Concrete and Ordinary Portland Cement Concrete: A Comparative Analysis of Different Grades of Concrete
,”
Cleaner Environmental Systems
3
(December
2021
): 100047, https://doi.org/10.1016/j.cesys.2021.100047
16.
Venyite
P.
,
Makone
E. C.
,
Kaze
R. C.
,
Nana
A.
,
Nemaleu
J. G. D.
,
Kamseu
E.
,
Melo
U. C.
, and
Leonelli
C.
, “
Effect of Combined Metakaolin and Basalt Powder Additions to Laterite-Based Geopolymers Activated by Rice Husk Ash (RHA)/NaOH Solution
,”
Silicon
14
, no. 
4
(February
2022
):
1643
1662
, https://doi.org/10.1007/s12633-021-00950-7
17.
Bernal
S. A.
,
Rodríguez
E. D.
,
Mejia de Gutiérrez
R.
,
Provis
J. L.
, and
Delvasto
S.
, “
Activation of Metakaolin/Slag Blends Using Alkaline Solutions Based on Chemically Modified Silica Fume and Rice Husk Ash
,”
Waste and Biomass Valorization
3
, no. 
1
(March
2012
):
99
108
, https://doi.org/10.1007/s12649-011-9093-3
18.
Mohapatra
S. S.
,
Mishra
J.
,
Nanda
B.
, and
Patro
S. K.
, “
A Review on Waste-Derived Alkali Activators for Preparation of Geopolymer Composite
,”
Materials Today: Proceedings
56
, Part 1 (
2022
):
440
446
, https://doi.org/10.1016/j.matpr.2022.01.400
19.
Vinai
R.
and
Soutsos
M.
, “
Production of Sodium Silicate Powder from Waste Glass Cullet for Alkali Activation of Alternative Binders
,”
Cement and Concrete Research
116
(February
2019
):
45
56
, https://doi.org/10.1016/j.cemconres.2018.11.008
20.
de Moraes Pinheiro
S. M.
,
Font
A.
,
Soriano
L.
,
Tashima
M. M.
,
Monzó
J.
,
Borrachero
M. V.
, and
Payá
J.
, “
Olive-Stone Biomass Ash (OBA): An Alternative Alkaline Source for the Blast Furnace Slag Activation
,”
Construction and Building Materials
178
(July
2018
):
327
338
, https://doi.org/10.1016/j.conbuildmat.2018.05.157
21.
Moraes
J. C. B.
,
Font
A.
,
Soriano
L.
,
Akasaki
J. L.
,
Tashima
M. M.
,
Monzó
J.
,
Borrachero
M. V.
, and
Payá
J.
, “
New Use of Sugar Cane Straw Ash in Alkali-Activated Materials: A Silica Source for the Preparation of the Alkaline Activator
,”
Construction and Building Materials
171
(May
2018
):
611
621
, https://doi.org/10.1016/j.conbuildmat.2018.03.230
22.
Kaduku
T.
,
Daramola
M. O.
,
Obazu
F. O.
, and
Iyuke
S. E.
, “
Synthesis of Sodium Silicate from South African Coal Fly Ash and Its Use as an Extender in Oil Well Cement Applications
,”
Journal of the Southern African Institute of Mining and Metallurgy
115
, no. 
12
(December
2015
):
1175
1182
.
23.
Bouzón
N.
,
Payá
J.
,
Borrachero
M. V.
,
Soriano
L.
,
Tashima
M. M.
, and
Monzó
J.
, “
Refluxed Rice Husk Ash/NaOH Suspension for Preparing Alkali Activated Binders
,”
Materials Letters
115
(January
2014
):
72
74
, https://doi.org/10.1016/j.matlet.2013.10.001
24.
Tong
K. T.
,
Vinai
R.
, and
Soutsos
M. N.
, “
Use of Vietnamese Rice Husk Ash for the Production of Sodium Silicate as the Activator for Alkali-Activated Binders
,”
Journal of Cleaner Production
201
(November
2018
):
272
286
, https://doi.org/10.1016/j.jclepro.2018.08.025
25.
Alnahhal
M. F.
,
Hamdan
A.
,
Hajimohammadi
A.
, and
Kim
T.
, “
Effect of Rice Husk Ash-Derived Activator on the Structural Build-Up of Alkali Activated Materials
,”
Cement and Concrete Research
150
(December
2021
): 106590, https://doi.org/10.1016/j.cemconres.2021.106590
26.
Handayani
L.
,
Aprilia
S.
,
Abdullah
,
C. Rahmawati
,
Aulia
T. B.
,
Ludvig
P.
, and
Ahmad
J.
, “
Sodium Silicate from Rice Husk Ash and Their Effects as Geopolymer Cement
,”
Polymers
14
, no. 
14
(August
2022
): 2920, https://doi.org/10.3390/polym14142920
27.
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
, ASTM C618–19 (West Conshohocken, PA:
ASTM International
, approved January 1,
2019
). https://doi.org/10.1520/C0618-19
28.
Tchakouté
H. K.
,
Rüscher
C. H.
,
Kong
S.
, and
Ranjbar
N.
, “
Synthesis of Sodium Waterglass from White Rice Husk Ash as an Activator to Produce Metakaolin-Based Geopolymer Cements
,”
Journal of Building Engineering
6
(June
2016
):
252
261
, https://doi.org/10.1016/j.jobe.2016.04.007
29.
Lothenbach
B.
,
Kulik
D. A.
,
Matschei
T.
,
Balonis
M.
,
Baquerizo
L.
,
Dilnesa
B.
,
Miron
G. D.
, and
Myers
R. J.
, “
Cemdata18: A Chemical Thermodynamic Database for Hydrated Portland Cements and Alkali-Activated Materials
,”
Cement and Concrete Research
115
(January
2019
):
472
506
, https://doi.org/10.1016/j.cemconres.2018.04.018
30.
Standard Test Method for Major and Minor Elements in Coal Ash by X-Ray Fluorescence
, ASTM D4326-21 (West Conshohocken, PA:
ASTM International
, approved September 1,
2021
), https://doi.org/10.1520/D4326-21
31.
Mustakim
S. M.
,
Das
S. K.
,
Mishra
J.
,
Aftab
A.
,
Alomayri
T. S.
,
Assaedi
H. S.
, and
Kaze
C. R.
, “
Improvement in Fresh, Mechanical and Microstructural Properties of Fly Ash- Blast Furnace Slag Based Geopolymer Concrete by Addition of Nano and Micro Silica
,”
Silicon
13
, no. 
8
(August
2021
):
2415
2428
, https://doi.org/10.1007/s12633-020-00593-0
32.
Alomayri
T.
,
Adesina
A.
, and
Das
S.
, “
Influence of Amorphous Raw Rice Husk Ash as Precursor and Curing Condition on the Performance of Alkali Activated Concrete
,”
Case Studies in Construction Materials
15
(December
2021
): e00777, https://doi.org/10.1016/j.cscm.2021.e00777
33.
Concrete Masonry Units—Specification, Part 1: Hollow and Solid Concrete Blocks
, IS 2185 (Part 1) (New Delhi, India:
Bureau of Indian Standards
,
2005
).
34.
Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes
, ASTM C1585 (West Conshohocken, PA:
ASTM International
, approved February 1,
2004
), https://doi.org/10.1520/C1585-04
35.
Das
S. K.
,
Rajput
P.
,
Mustakim
S. M.
, and
Bhoi
B.
, “
Towards Sustainable Construction: Utilization of Ferrochrome Slag as Portland Cement Replacement in Cementitious Composites
,”
Journal of Sustainable Metallurgy
9
, no. 
1
(March
2023
):
329
340
, https://doi.org/10.1007/s40831-023-00653-w
36.
Methods of Physical Tests for Hydraulic Cement, Part 7: Determination of Compressive Strength of Masonry Cement
, IS 4031 (Part 7) (New Delhi, India:
Bureau of Indian Standards
,
1988
).
37.
Hamidi
R. M.
,
Man
Z.
, and
Azizli
K. A.
, “
Concentration of NaOH and the Effect on the Properties of Fly Ash Based Geopolymer
,”
Procedia Engineering
148
(
2016
):
189
193
, https://doi.org/10.1016/j.proeng.2016.06.568
38.
Deb
P. S.
,
Sarker
P. K.
, and
Barbhuiya
S.
, “
Sorptivity and Acid Resistance of Ambient-Cured Geopolymer Mortars Containing Nano-silica
,”
Cement and Concrete Composites
72
(September
2016
):
235
245
, https://doi.org/10.1016/j.cemconcomp.2016.06.017
39.
Mehta
A.
and
Siddique
R.
, “
Sulfuric Acid Resistance of Fly Ash Based Geopolymer Concrete
,”
Construction and Building Materials
146
(August
2017
):
136
143
, https://doi.org/10.1016/j.conbuildmat.2017.04.077
40.
Bakharev
T.
,
Sanjayan
J. G.
, and
Cheng
Y.-B.
, “
Sulfate Attack on Alkali-Activated Slag Concrete
,”
Cement and Concrete Research
32
, no. 
2
(February
2002
):
211
216
, https://doi.org/10.1016/S0008-8846(01)00659-7
41.
Davidovits
J.
,
Geopolymer: Chemistry and Applications
, 4th ed. (
Saint-Quentin, France
:
Geopolymer Institute
,
2015
).
42.
Phoo-ngernkham
T.
,
Maegawa
A.
,
Mishima
N.
,
Hatanaka
S.
, and
Chindaprasirt
P.
, “
Effects of Sodium Hydroxide and Sodium Silicate Solutions on Compressive and Shear Bond Strengths of FA–GBFS Geopolymer
,”
Construction and Building Materials
91
(August
2015
):
1
8
, https://doi.org/10.1016/j.conbuildmat.2015.05.001
43.
Bernal
S. A.
,
Provis
J. L.
,
Walkley
B.
,
San Nicolas
R.
,
Gehman
J. D.
,
Brice
D. G.
,
Kilcullen
A. R.
,
Duxson
P.
, and
van Deventer
J. S. J.
, “
Gel Nanostructure in Alkali-Activated Binders Based on Slag and Fly Ash, and Effects of Accelerated Carbonation
,”
Cement and Concrete Research
53
(November
2013
):
127
144
, https://doi.org/10.1016/j.cemconres.2013.06.007
This content is only available via PDF.
You do not currently have access to this content.